
1995, 1996Institute for Defense Analyses, 1801 N. Beauregard Street,
Alexandria, Virginia 22311-1772 • (703) 845-2000.

Permission is granted to any individual or institution to use, copy, or distribute
this document in its paper or digital form so long as it is not sold for profit or used
for commercial advantage, and that it is reproduced whole and unaltered, credit to
the source is given, and this copyright notice is retained. The material may be
reproduced by or for the U.S. Government pursuant to the copyright license under
the clause at DFARS 252.227-7013 (10/88). This document may not be posted on
any web, ftp, or similar site without the permission of the Institute for Defense
Analyses.

The work was conducted under contract DASW01-94-C-0054, Task T-S5-1266,
for the Defense Information Systems Agency. The publication of this IDA
document does not indicate endorsement by the Department of Defense, nor
should the contents be construed as reflecting the official position of that Agency.

iii

PREFACE

This document was prepared by the Institute for Defense Analyses (IDA) under the

task order, Object-Oriented Technology Implementation in the Department of Defense

(DoD), in response to a task objective to develop strategies for the implementation of

object-oriented technology (OOT) within specific information technology areas within the

DoD. This document is one of a set of four reports on OOT implementation. The other

reports, focusing on other areas of OOT, are IDA Paper P-3142,Object-Oriented Develop-

ment Process for Department of Defense Information Systems; IDA P-3143,Object-Orient-

ed Programming Strategies for Ada; and IDA Paper P-3145,Software Reengineering Using

Object-Oriented Technology. All of this work was sponsored by the Defense Information

Systems Agency.

The following IDA research staff members were reviewers of this document: Dr.

Edward A. Feustel, Dr. Richard J. Ivanetich, Dr. Reginald N. Meeson, Dr. Judy Popelas,

Mr. Clyde G. Roby, and Mr. Glen R. White.

iv

Table of Contents

v

EXECUTIVE SUMMARY .. ES-1

1. INTRODUCTION ... 1

1.1 PURPOSE AND SCOPE ... 1

1.2 BACKGROUND .. 1

1.3 ORGANIZATION OF DOCUMENT .. 1

2. WRAPPING CONCEPTS ... 3

2.1 WRAPPING SOFTWARE COMPONENTS AS INDIVIDUAL OBJECTS 3

2.2 WRAPPING SOFTWARE WITH OBJECT MODELS 3

2.3 EXAMPLE OF OBJECT MODEL WRAPPING .. 5

2.4 ADVANTAGES AND DRAWBACKS OF WRAPPING 7
2.4.1 General Advantages of Wrapping .. 7
2.4.2 Object Model Wrapper Advantages .. 9
2.4.3 Direct Wrapping Drawbacks ... 10
2.4.4 General Drawbacks of Wrapping .. 11

2.5 WRAPPING CRITERIA .. 12

3. SYSTEM MIGRATION STRATEGIES ... 15

3.1 DIVIDE-AND-CONQUER ... 15

3.2 DIVIDE-AND-WRAP ... 16

3.3 UNITE-AND-CONQUER ... 19

3.4 ONE-SHOT REBUILD .. 21

4. WRAPPER CONTENTS ... 23

4.1 WRAPPING FUNCTIONS OR PROCEDURES .. 23

4.2 WRAPPING DATABASE FILES ... 25

4.3 WRAPPING DATABASE TABLES ... 26

4.4 WRAPPING A DATABASE MANAGEMENT SYSTEM 28

4.5 ALTERNATIVE DATABASE ENCAPSULATION MODELS 29

4.6 WRAPPING PROGRAMS .. 30

4.7 WRAPPING SUBSYSTEMS .. 33

5. ALTERNATIVE ENCAPSULATION TECHNIQUES .. 35

5.1 GATEWAYS ... 35

5.2 DATABASE VIEWS ... 37

vi

6. WRAPPING IMPLEMENTATION .. 39

6.1 LEGACY ENVIRONMENT CONSTRAINTS ... 40

6.2 WRAPPING PRELIMINARIES .. 42

6.3 FUNCTION WRAPPING IN ADA ... 45
6.3.1 Example 1: “Employee_Taxable” ... 47
6.3.2 Example 2: “Payroll” ... 49
6.3.3 Example 3: “Math_Library” .. 50

6.4 EXAMPLE SCENARIO .. 52
6.4.1 Legacy Program Scenario .. 52
6.4.2 Migration Program Scenario .. 53
6.4.3 Object Model Scenario .. 53
6.4.4 Wrapping a Data File Scenario .. 53

6.5 INTERFACING TO EXTERNAL CODE ... 56
6.5.1 Operating System Interface ... 56
6.5.2 Common Storage Areas Interface .. 60
6.5.3 Intermediate Language Interface ... 62

6.6 WRAPPING A DATABASE MANAGEMENT SYSTEM 65
6.6.1 SQL to Ada Binding .. 66
6.6.2 All-Ada Bindings ... 67
6.6.3 Embedded SQL ... 69
6.6.4 SQL Ada Module Description Language ... 72

6.7 ADA 95 INTERFACE TO OTHER PROGRAMMING LANGUAGES 73
6.7.1 Interfacing Pragmas ... 74
6.7.2 The Package “Interfaces” ... 75
6.7.3 Interfacing with Cobol ... 76

7. SUMMARY OF GUIDELINES AND ISSUES .. 81

7.1 GUIDELINES FOR OO WRAPPING ... 81

7.2 LEGACY WRAPPING ISSUES ... 82

APPENDIX A. EXAMPLES OF OO PROGRAMMING CODEA-1

LIST OF REFERENCES ..References-1

GLOSSARY ..Glossary-1

LIST OF ACRONYMS ... Acronyms-1

List of Figures

vii

Figure ES-1. Legacy Software Wrapped as an Object .. ES-2

Figure ES-2. Legacy Software Wrapped with Object Model ES-3

Figure 1. Legacy Software Wrapped as an Object .. 4

Figure 2. Legacy Software Wrapped with Object Model .. 4

Figure 3. Example of System Wrapping for a Geometric Modeling System 6

Figure 4. Wrapping Supports Translation to Standard Data Element Formats 8

Figure 5. Divide-and-Conquer With Some Wrapping... 16

Figure 6. Divide-and-Wrap Migration Strategy... 17

Figure 7. Unite-and-Conquer Strategy... 20

Figure 8. Wrapping Program Functions... 24

Figure 9. Wrapping Data Files... 26

Figure 10. Wrapping Database Tables... 27

Figure 11. Wrapping Database Tables as Domain Object Classes.................................. 27

Figure 12. Wrapping Database Tables with a Domain Model... 28

Figure 13. Wrapping a Whole DBMS ... 29

Figure 14. Wrapping Programs as Objects .. 31

Figure 15. Wrapping Programs with Object Models ... 32

Figure 16. Wrapping Program and Data Stores as an Object .. 33

Figure 17. Wrapping Entire Subsystems ... 34

Figure 18. Gateway Types and Placements ... 36

Figure 19. Calling a Wrapped Procedure/Function/Subprogram 46

Figure 20. Function Wrapping Example in Ada.. 48

Figure 21. Wrapping of Scenario Legacy System ... 52

Figure 22. Object Model .. 54

Figure 23. Interaction Diagram.. 55

Figure 24. Linking via a Unix Shell... 57

Figure 25. Interfacing Using a Common Area... 60

Figure 26. Interfacing via an Intermediate Language.. 62

Figure 27. The Meaning of SAMeDL Text ... 72

List of Tables

ix

Table 1. Examples of Legacy Environments ... 40

Table 2. Wrapping Guidelines ... 45

ES-1

EXECUTIVE SUMMARY

Many of the current software engineering activities in the Department of Defense

(DoD) center on migrating from obsolete legacy software systems to modernized migration

systems. Legacy information systems incorporate obsolete technology such as closed systems,

“stovepipe” design, and outmoded programming languages or database systems. Modernized

migration systems are those systems, already in existence or being planned, that utilize or

intend to utilize contemporary best practices in design and implementation. To date, transition-

ing a legacy system to a migration system has proven to be difficult.

Object-oriented technology (OOT) may be counted among the best practices for soft-

ware development by virtue of its efficiencies in development and maintenance and its inherent

support for reuse. OOT consists of a set of methodologies and tools for developing and main-

taining software systems using software objects composed of encapsulated data and operations

as the central paradigm.Software wrapping is a technique in which an interface is created

around an existing piece of software, providing a new view of the software to external systems,

objects, or users. Wrapping can be accomplished at multiple levels: around data, individual

modules, subsystems, or entire systems.

This document describes the potential benefits, problems, and issues in using the OO

technique of software wrapping in DoD information systems. It also describes the essential

activities in OO wrapping, from determining the suitability of wrapping applications to imple-

menting wrappers of legacy code or data using the Ada programming language.

Wrapping Basics

The narrow concept of a wrapped object is illustrated in Figure ES-1 on page ES-2,

where the method icons surrounding the legacy software represent its encapsulation as a single

object, accessible only through the object-defined methods (or operations). Any user access to

the legacy software would be mediated through some of these methods, whether the user inter-

face is a complex set of objects constituting a graphical user interface (GUI) or simple terminal

line command input/output (I/O).

ES-2

The broader conception of an OO wrapper is illustrated in Figure ES-2 on page ES-3,

where an object model of multiple classes and objects is created as part of the wrapper to pro-

vide a natural OO interface to the principal conceptual entities implicit in the original system.

The new objects and classes of such a wrapper can interface with the legacy programs and data

in different ways. An application programming interface (API) may mediate communication

between the wrapper object model and the legacy program, as illustrated in Figure ES-2. When

the legacy software is a database, a database server might provide the functionality of an API,

with objects accessing the database through SQL calls to the server.

System Migration Strategies

Wrapping fits into the following broader strategies for entire system migrations: divide-

and-conquer, divide-and-wrap, unite-and-conquer, and one-shot rebuild.

Divide-and-conquer. This strategy proceeds incrementally, dividing legacy subsystems

and applications into those selected for immediate conversion to OO technology and those that

are not. The most suitable candidates are converted and integrated with the existing systems,

and the process is repeated until either the entire system or all suitable parts of it are converted

to OO form. This supports a staged transition, ordinarily more manageable, and involves lower

risk than attempting to convert an entire system at once. Wrapping could participate in this

Figure ES-1. Legacy Software Wrapped as an Object

Legacy
Software

User Input

Legacy Software

Method/Operation

Object/Class

I/O Link

Key

Other Wrapped
 Objects

Monitor Display

Database

Other System
 Objects

ES-3

strategy by providing temporary modernization of some system components to ease their inte-

gration with fully converted components. Leaving some system components untouched, how-

ever, can leave some integration difficulties, and a mixture of traditional and OO system

components could be awkward to support throughout the duration of incremental moderniza-

tion. This is a potential drawback to any divide-and-conquer scheme, whether or not wrapping

is involved. However, wrapping can help alleviate this problem, as demonstrated by the next

general strategy, which we call “divide-and-wrap.”

Divide-and-wrap. Wrapping can be used quite broadly to effect a complete conversion

of the legacy system to OOT in a single step by wrapping everything that is not fully reengi-

neered. Wrapped components could then be incrementally reengineered, as feasible, using OO

techniques. This strategy eases integration of all the pieces at different stages of transition since

the methods interfacing wrapped objects can perform any necessary translations between leg-

acy and modernized components. It offers flexibility in scheduling the transition increments

through variations in both the amount of reengineering and the granularity of the components

wrapped. In some cases, whole subsystems may be wrapped for a lower-cost transition stage,

while wrapping may be executed at a finer level during transition stages when more time and

staff resources are available. The principal drawback to this general transition strategy is that

wrapper
object
model

Figure ES-2. Legacy Software Wrapped with Object Model

Application Programming Interface

Legacy Software Legacy Software

Key

} other
system
objects/classes

Domain
Class/Object

Object link

}

ES-4

wrapping large portions of a system may require considerable rework (of object hierarchies,

methods, and data structures) when these components are unwrapped and decomposed into

more meaningful objects.

Unite-and-conquer. This strategy achieves a unification of system applications and

databases through a common OO framework that organizes access to legacy code and data as

well as to new and reengineered OO system components. Such a framework can be constructed

as part of developing business or enterprise models of the business activities supported by the

legacy information system. However, developing business models can be a time-consuming

analysis task for large systems since the essential business objects must be identified and

mapped to the relevant existing programs and/or databases. Thus, a unite-and-conquer strategy

can only be effectively executed at a migration stage when sufficient resources are available for

this extensive analysis. When the resources are available, the payoff can be considerable in later

stages of migration.

One-shot rebuild. Multiple experiences in building large OO systems indicate that, for

OO systems in particular, incremental development is more effective than the classic waterfall

development model. While a one-shot waterfall development has never been recommended for

OO systems, it can be feasible in smaller automated information systems to apply locally incre-

mental development to the system as a whole. One-shot rebuild could also be viable for a large

legacy systems if it is very similar to an existing OO system that has already been implemented,

or if it can be constructed out of existing tested frameworks and repository objects.

Issues and Findings

What are the different methods of software wrapping and which are preferable? When

the resources are available, domain object models composed of multiple related domain objects

are preferable for wrapping legacy components rather than simply wrapping each component

as an isolated object. Such object model wrapping provides a better foundation for any subse-

quent legacy modernization or extensions. The costs of object model wrapping can be mini-

mized by judicious abstraction of the domain object classes, modeling only those features

essential to wrapping.

What criteria should be used in selecting legacy software components for wrapping?

Election of a wrapping strategy and selection of components for wrapping require good reasons

to wrap rather than to reengineer and a determination of feasibility of wrapping. These reasons

include the need for rapid modernization in the absence of sufficient time or staffing resources

for reengineering. Another set of reasons consists of various barriers to effective reengineering,

ES-5

such as the absence of documentation or available domain experts, and the complexity or great

volume of legacy code. The feasibility of wrapping depends on various features of the legacy

system and target system environments, being improved by modularity in legacy code, and

ready support for interfaces between legacy components and the target OO environment. Under

such a favorable environment, software wrapping can provide the most effective means of

meeting modernization deadlines.

What overall system migration strategies are least risky and how might they incorpo-

rate wrapping? The “one-shot rebuild” strategy is widely considered risky for large systems

because it attempts too much reengineering in a single step. In contrast, the “unite-and-con-

quer” strategy is considered superior and is recommended because it uses a unifying object

model of the system domain to wrap legacy components, supporting a natural incremental

modernization. This strategy minimizes costly revisions to the object models by developing the

basic domain object model at the outset and unifying the modernized and legacy components

with it. The advantages of “unite-and-conquer” strategy do come at the expense of additional

upfront costs in building the domain (or business) object model, compared to the “divide-and-

conquer” approach which only develops those parts of the domain object model that are needed

for the modernized parts of the system at any particular stage of migration. Thus, “unite-and

conquer” is only recommended for a migration stage when there are sufficient resources avail-

able for a full domain analysis and object model development.

What programming techniques are involved in implementing wrapping? Two alterna-

tive techniques for implementing the interface between an object wrapper and legacy software

are described for implementations in the first Ada programming language standard (Ada 83):

direct calls to legacy procedures and functions using the interface pragma to a legacy language,

and indirect calls via an operating system or via an intermediate language. While direct calls

are preferable for accessing legacy procedures, this is not always possible due to environment-

specific barriers. The later standard, Ada 95, has added several new features to greatly facilitate

the interface to code in foreign languages, which should avoid any need for indirect methods

in many cases.

When wrapping an SQL database, there are three viable options for implementing an

Ada binding to SQL: all-Ada binding, embedded SQL, and use of an additional programming

language, such as SAMeDL (SQL Ada Module Description Language).

ES-6

In addition, a number of unresolved wrapping issues were identified:

• What general guidelines are appropriate for the transition from a mainframe-based

legacy system to a local area network based client-server model?

• What guidelines can be provided for mapping the legacy terminal I/O into today’s

GUIs?

• What standards-based support can be provided for interfacing OO programs in Ada

(and other languages) to database management systems, whether relational or

object oriented?

• What guidelines can be established for selecting techniques for promoting interop-

erability among different DoD information systems? For example, is the Object

Management Group’s Common Object Request Broker Architecture suitable for

this purpose?

• What are the unique issues related to wrapping and migration of real-time systems?

1

1. INTRODUCTION

1.1 PURPOSE AND SCOPE

The purpose of this document is to support the migration of legacy Department of

Defense (DoD) information systems by providing a detailed explanation of the potential

benefits of using the object-oriented (OO) technique of software wrapping as a mechanism.

It specifically describes the risks, problems, and issues in the use of OO wrapping tech-

niques for DoD information systems. It is also intended to be a guide to all the essential

activities in OO wrapping, from determining the suitability of wrapping applications to

implementing wrappers of legacy code or data using the Ada programming language. This

report is intended to address issues of interest to anyone interested in techniques for facili-

tating the software migration process.

1.2 BACKGROUND

Much of DoD’s current software engineering activities center around the migration

from obsolete legacy software systems to modernized migration systems.Legacy informa-

tion systems are those systems currently operating that incorporate obsolete technology

such as closed systems, “stovepipe” design, and outmoded programming language or data-

base systems.Modernized migration systems are those systems already in existence or are

being planned that utilize or intend to utilize contemporary best practices in design and

implementation. OO technology (OOT) may be counted among the best practices for soft-

ware development by virtue of its efficiencies in development and maintenance and its

inherent support for reuse, as explained in a companion report [IDA95a]. Transitioning a

legacy system to a migration system has proven to be difficult; in response, several effective

strategies are described in this report that would facilitate migrating to a modernized sys-

tem.

1.3 ORGANIZATION OF DOCUMENT

Chapter 2 reviews the concepts of wrapping software components and includes an

example from an actual software migration project to illustrate these wrapping concepts.

2

Criteria are identified for evaluating the suitability of a wrapping strategy and for selecting

components for wrapping.

Chapter 3 places wrapping in the broader context of alternative migration strategies

for a whole system, arguing the advantages of the “unite-and-conquer strategy” using a uni-

fied object model throughout progressive stages of migration, as compared to the other

three strategies (divide-and-conquer, divide-and-wrap, and one-shot rebuild).

Chapter 4 discusses wrapper types and content, and the wrapping of software com-

ponents at different levels of granularity.

Chapter 5 describes alternative OO wrapping techniques that provide encapsulation

of legacy code or data during migration to a modernized system.

Chapter 6 discusses wrapping implementation. Several examples of wrapping using

Ada interface pragmas are given for functions or subprograms written in the Cobol, C, and

Fortran languages. A simplified scenario is then presented of a legacy migration situation

as a basis for illustrating wrapping techniques. Details are provided on wrapping a data file

and a program from the legacy system using Ada interface pragmas. Complete code for this

example is provided for reference in Appendix A. The general issues of OO programming

in Ada are not analyzed in this document, but do receive detailed treatment in a companion

report [IDA95b].

Chapter 7 summarizes the basic guidelines for the application of wrapping and

identifies the remaining issues involved in the implementation of wrapping.

References, glossary, and acronyms are provided at the end of the document.

3

2. WRAPPING CONCEPTS

Software wrapping is a technique in which an interface is created around an existing

piece of software, providing a new view of the software to external systems, objects, or

users. Wrapping can be accomplished at multiple levels: around data, individual modules,

subsystems, or entire systems. This chapter provides a general introduction to the types of

software wrapping with additional details and examples in the subsequent chapters.

2.1 WRAPPING SOFTWARE COMPONENTS AS INDIVIDUAL OBJECTS

The narrow concept of a wrapped object is illustrated in Figure 1 on page 4. The

method icons surrounding the legacy software represent its encapsulation as a single object,

accessible only through the object-defined methods (or operations). Any user access to the

legacy software would be mediated through some of these methods, whether the user inter-

face is a complex set of objects constituting a graphical user interface (GUI) or simple ter-

minal line command input/output (I/O). Other system objects, and even other wrapped

objects, also access the wrapped legacy software only through the wrapper’s methods.

Access from the wrapped object to other parts of the system may still occur directly from

the legacy code to databases and user interfaces, or may be mediated by calls to the methods

of other system objects. We refer to such wrapping of legacy software into a single object

assingle-object wrapping ordirect wrapping. Direct wrapping of different types and at dif-

ferent levels of granularity can be created through different partitions of a legacy software

system’s functions, programs, and databases, as described in detail in Chapter 4.

2.2 WRAPPING SOFTWARE WITH OBJECT MODELS

The broader concept of an OO wrapper is illustrated in Figure 2 on page 4. An

object model of multiple classes and objects is created as part of the wrapper to provide a

natural, OO interface to the principal conceptual entities implicit in the original system. The

new objects and classes of such a wrapper can interface with the legacy programs and data

in different ways. An application programming interface (API) may mediate communica-

tion between the wrapper object model and the legacy program, as illustrated in Figure 2

4

Figure 1. Legacy Software Wrapped as an Object

Legacy
Software

User Input

Legacy Software

Method/Operation

Object/Class

I/O Link

Key

Other Wrapped
 Objects

Monitor Display

Database

Other System
 Objects

wrapper
object
model

Figure 2. Legacy Software Wrapped with Object Model

Application Programming Interface

Legacy Software Legacy Software

Key

} other
system
objects/classes

Domain
Class/Object

Object link

}

5

on page 4. When the legacy software is a database, a database server might provide the

functionality of an API, with objects accessing the database through SQL calls to the server.

When a separate API is used, it might be written in the OO programming style of the mod-

ernized portion of the OO system, e.g., the API, itself might be an object. Making an API

into an object effectively wraps the legacy software as a single object. However, when this

wrapper is combined with an object model of the legacy software, a much richer interface

is created than what appears in a simple “direct wrapper.” Alternatively, the API might be

composed simply of minor modifications to legacy code to support external access directly

from wrapper objects.

However the legacy software is interfaced, the essence of the object model wrap-

ping approach is the interface through multiple classes/objects which are natural parts of an

object model of the application. This provides significant advantages over simply directly

wrapping software as an individual object: application objects will persist throughout sub-

sequent migration stages while wrapped software objects will need to be replaced when

their legacy software is modernized. These advantages are expanded upon in the discussion

on wrapping costs and benefits (Section 2.4 on page 7).

One of the earliest examples of object model wrapping is found in the geometric

modeling application described in [DIET89]. In the migration described, an API was com-

posed by modifying selected subroutines in the legacy system so that the object classes of

the modernized components of the migration system could access them. Object classes of

geometric models were defined in an OO programming language, connected to correspond-

ing routines via the API, and instantiated to instances at run-time. This example is described

in some detail in the next section.

2.3 EXAMPLE OF OBJECT MODEL WRAPPING

An alternative OO interface to legacy system wrapping was pioneered at IBM’s

Thomas J. Watson Research Center in the Tiered Geometric Modeling System (TGMS)

[DIET89]. This system provided an alternative OO interface to a legacy system, the Geo-

metric Design Processor (GDP), a solid modeling system composed of several hundred

thousand lines of PL/I code [WESL80, WOLF87]. TGMS used a set of objects in the AML/

X object-oriented programming language [NACK86] to wrap the entire GDP system. The

relationships between these systems are illustrated in part by Figure 3 on page 6.

This figure provides an informal representation of part of the object model in TGMS

that is used in wrapping the functionality of the GDP system. The hierarchy of geometric

6

models is shown by straight line links between class icons, starting with theSolid class. The

primitive types of solid objects are shown to be cuboids, cylinders, hemispheres, cones, rev-

olutions, and extrusions. The non-primitive types are hulls, composed of the convex hull of

a set of points, and boolean combinations of other solids. Only those objects that interact

directly with the wrapped software (or its API) are shown as included within the scope of

the wrapper (in the shaded rounded box). Connections between wrapper objects and the

Figure 3. Example of System Wrapping for a Geometric Modeling System

Application Programming Interface

Geometric Design Processor (GDP) Solid Modeling System
Polyhedra
Boolean Operations

Boolean
Combo◊

Union

 Intersection

....

....

Tiered Geometric Modeling System (TGMS)

 Solid

 PrimitiveNonPrimitive

Hull

 Differ-
ence

 Cuboid

 Cylinder

 Hemisphere Cone

 Revolution

 Extrusion

 Point

7

legacy code API are shown as simple straight line segments connecting object icons to the

API box. Higher-level objects, such as the genericSolid, Primitive, andNonPrimitive, are

shown as part of TGMS but not as part of the wrapper under the assumption that they do

not have such direct connections. Although the actual cutoff between wrapper objects and

others in TGMS was not clear from our source, the idea of this distinction is well illustrated

since it is quite possible that only the more specific object classes would be connected to

the legacy code implementing their functionality. Other non-wrapper objects of TGMS are

alluded to by the unlabeled object bubbles. These objects may include additional function-

ality and interface and control objects.

2.4 ADVANTAGES AND DRAWBACKS OF WRAPPING

2.4.1 General Advantages of Wrapping

Once wrapped, legacy software can function as a set of objects or classes within a

larger OO system, interfacing via message passing.

The concept of using a wrapper to establish data description compatibility is illus-

trated in Figure 4 on page 8, where the legacy software is depicted as having the format F1,

the standardized format of the modernized OO portion of the migration system is F2, and

the API performs the mapping back and forth between them.

Wrapping facilitates the rapid transition from legacy to migration systems by min-

imizing the amount of code rewriting and database restructuring required in the initial stag-

es of migration. Thus, a partially modernized migration system may be fielded sooner than

it could if the entire legacy system were reengineered at once. Maintenance and modifica-

tion costs can be more quickly reduced since there are fewer separate systems to maintain

when multiple redundant legacy systems are transitioned to fewer standardized systems.

Wrapping can establish compatibility of old code with new interoperable data

description standards by supporting the translation between these standards and

legacy formats at the methods interface to the wrapped software.

Wrapping facilitates rapid transition of multiple legacy systems to fewer and more

interoperable systems, thereby improving interoperability and reducing maintenance

and modification costs.

8

However, migration systems containing wrapped components still face some of the main-

tenance headaches of the legacy systems since the legacy code is likely to be difficult to

modify. Object wrappers can ease some of the modification burdens of software mainte-

nance in so far as the modifications can be accomplished through specialization of a wrap-

per class without modifying the original code. But the feasibility of this technique will vary

depending on the system. However effective this technique might prove, bugs in the legacy

software will ordinarily require direct modifications, assuming the code is not reengi-

neered. Thus, maintenance requiring modification of legacy code cannot be entirely avoid-

ed in systems using wrapping.

Wrapping is most often discussed as a temporary measure—ordinarily as an interim

solution to the problems of modernizing legacy software, a stepping stone on the path of a

full system reengineering. In some cases it may also serve as a terminal treatment for obso-

lescent software, when interoperability is required temporarily for a system that is close to

retirement. In either case, it can provide some of the benefits of OO systems without the

costs of fully reengineering all the legacy code. The wrapped sections of a legacy system

can participate as objects in a broader OO system, while the details of the legacy code and/

or data are encapsulated. When data are so encapsulated, the system may be accessed via

standard modernized data and object definitions without disrupting the legacy database.

Migration Object Model:
format: F2

Figure 4. Wrapping Supports Translation to Standard Data Element Formats

Application Programming Interface

Legacy software } Legacy Software:
format: F1

API mapping: F1 F2

}

9

Wrapped objects may even be reused in other systems if the granularity wrapping creates

objects of potential use elsewhere.

2.4.2 Object Model Wrapper Advantages

Wrapping with object models deserves special recognition as a possible means of

encapsulation distinct from direct wrapping of a legacy components as a single object. For-

tunately, such object models need not contain the full detail expected of a reengineered sys-

tem in order to provide structured encapsulation of legacy databases, code, or both. An

initial model of an enterprise, business, or other application domain structure need not

include much, if any, of the functioning methods that would implement business or appli-

cation operations. When functioning as a database interface, such a model may consist

primarily of objects with pointers to (or access scripts for) their corresponding instances

and attributes in the legacy data base. Operational aspects of these models can continue to

be performed by legacy programs until they are transitioned to the relevant objects or to

more specific instances of them in reengineered code. Thus, such object models may be

developed and incorporated in a migration system with much less effort than required by a

complete reengineering of the covered automated information system (AIS) activities.

Wrapper object models provide an extraordinarily useful approach to encapsulation

due to the rich object structure within which they accomplish it. Object models can encap-

sulate a database at much finer granularity than a single object wrapper can achieve. The

separate elements (objects) of an object model can participate in a structure of inheritance

and service relations that illuminates the essence of the encapsulated component, as con-

trasted with the mere data hiding found in the unstructured encapsulation of direct wrap-

ping. Wrapper object models provide a structural model for the objects implicitly handled

by legacy code and data. Unlike a simple single object wrapper, object models are not

“throw-away” code, discarded after the encapsulated components are modernized. Object

models can provide a lasting foundation of domain objects which can be reused in subse-

quent migration stages. Rich elaborations of the initial class attributes and operations can

be constructed in future migration steps to flesh out the details hidden in the legacy code as

it is modernized. In such transitions, any hierarchies contained in a wrapper object model

can be enriched through inclusion of more specific subclasses whose operations incorporate

functionality previously accommodated by the wrapped legacy code. Such objects may, of

course, be reused, both in other migration systems, and as foundations for rapid develop-

ment of new applications.

10

The example outlined in Section 2.3 on page 5 for object model wrapping in TGMS

exhibits these advantages. TGMS can be easily extended with new classes of solid models

through their addition to the TGMS OO hierarchy. Objects in these classes may then be

combined with existing solid models using the existing wrapped boolean combination

operations from the GDP legacy system. The wrapped capabilities of TGMS may also be

easily extended by specialization of the legacy object functionality using OO inheritance.

New classes might be added as specializations of revolution and extrusion classes, for

example. As with any OO subclass, such specializations can utilize any applicable opera-

tions in their existing superclasses. Thus, the wrapped legacy code of GDP is readily

extended with new functionality. If the GDP code had been wrapped more directly as a sys-

tem or as individual functions and data, such natural extensions would not be so straight-

forward to implement.

2.4.3 Direct Wrapping Drawbacks

A drawback specific to the direct wrapping technique is the scale of large legacy

components when wrapped as objects. If a legacy software component of a large size were

to be fully reengineered using OOT, it would most likely break down into multiple interact-

ing objects to better reflect its implicit organization of information and procedures. Direct

wrapping can save some of the work of this decomposition and reorganization in the short

term when wrapping at a coarse level using large software components. But such savings

come at the cost of a coarser scale representation that may be more awkward to integrate

with the rest of an OO system. Where other objects might only need to access some small

part of the data or functionality of the wrapped object, they must refer to the wrapped com-

ponent as a whole. Where other systems may only need minor functions from a wrapped

component, they will have to incorporate the whole component if they are to benefit from

its reuse. Furthermore, subsequent reengineering of a directly wrapped legacy program

may require substantial rework of an existing class hierarchy in order to accommodate the

new classes abstracted from a legacy program.

In short, the use of object models for encapsulation of legacy system components has

many of the advantages of OOT in general, while its costs can be minimized in its ini-

tial application through judicious abstraction of only the essential features of the

model objects.

11

Wrapping legacy software components directly as objects may share some of the

advantages of wrapping with object models if the direct wrapping is performed at a fine

enough granularity, such as the level of individual functions. Such fine granularity allows

the reuse of function objects without the unneeded baggage of the rest of a system. But

wrapping legacy functions as objects remains unlikely to produce a natural and lasting

object model of the system domain. Functions ordinarily map more naturally into the meth-

ods of an OO system than into its objects. Effective OO design typically requires taking a

fresh look at the system in order to abstract the relevant objects from its requirements and

functionality. This fresh perspective can be difficult to achieve if restricted to creating

objects from direct wrappings of legacy components. While direct wrapping of legacy sys-

tem components can often be accomplished more quickly than wrapping with multiple

newly abstracted objects, the latter approach can provide a more stable class/object struc-

ture throughout subsequent migration phases.

2.4.4 General Drawbacks of Wrapping

This drawback can be substantially mitigated if future modifications can be imple-

mented within the OO portion of a migrated system, external to the legacy code. The addi-

tion of new methods and operations to a class wrapper, for example, may be accomplished

without touching the legacy code. Augmentation of the methods, attributes, or both of a

class wrapper might also be achieved independently of the legacy code by creating new

subclasses with the additional structure and/or functionality. Maintenance involving fixes

to bugs in the legacy code may be more difficult, however, requiring direct modifications of

the legacy code itself. These potential problems with maintenance and modification are rea-

sons for considering wrapping as only a temporary solution for modernizing software sys-

tems, with full reengineering (or obsolescence) as an eventual goal (or expectation).

The principal drawback to any type of wrapping is in long-term maintenance, since the

legacy software remains beneath the wrappers, and is likely to be difficult to maintain

or modify.

For all these reasons, it is preferable, when the resources are available, to wrap legacy

software with a carefully abstracted object model than to directly wrap a whole pro-

gram or system as a single object.

12

2.5 WRAPPING CRITERIA

Feasibility of wrapping depends primarily on how modular the legacy system com-

ponent is and how readily it can be accommodated within the migration target environment.

If a segment of code and/or data are fairly self-contained, with relatively few types of calls

out to and in from external code, then it may be feasible to wrap it efficiently. When a seg-

ment of application code is interwoven with complex input/output (I/O) to users, data

stores, other code, and other applications, it may be as costly to wrap as to reengineer, so

that reengineering is preferable for its more thorough modernization. Even a very modular

system component can be difficult to wrap if its elements are not well supported within the

targeted migration environment. Code written in a proprietary language for obsolescent

hardware or operating systems, for example, may have no support on a modern computing

platform. Obsolete database management systems may also prove impractical to port to

new platforms. Thus, wrapping feasibility must take into account both the modularity of the

legacy component and its support within the target migration environment.

A major reason for considering wrapping some parts of legacy systems is a situation

in which it is especially difficult to fully reengineer that part of the system, but strong pres-

sures exist for modernizing the whole system quickly. Some components of a legacy system

can be especially difficult to fully reengineer due to a variety of factors, such as the follow-

ing:

• Absence of documentation

• Departure of all domain experts

• Complexity of code

• Fragility (or brittleness) of code

• Size of code or database

• Staffing resource limitations

At the same time there may be strong pressures to modernize the existing legacy system to

meet pressing deadlines due to factors such as the following:

The principal criteria for selection of some component of a legacy system for wrap-

ping are whether it is feasible to wrap and whether there are good reasons to wrap

as opposed to reengineering or replacing it.

13

• Expiring hardware and software contracts

• Shift to new platforms

• Requirements for interoperability with other reengineered AISs

• Data item standardization requirements

Under conditions like these, wrapping may be the most effective short-term means of

meeting interim modernization deadlines.1

Consider, for example, a hypothetical legacy information system written in Cobol,

hosted on IBM mainframes whose maintenance contract is up for renewal in 10 months.

Imagine that an analysis has shown that the total costs for hardware to replace the aging

IBM mainframes with workstations under a client-server architecture are much less than

the current yearly maintenance costs. Such discrepancies between the costs of replacement

versus maintenance of obsolete system hardware are not uncommon in such transitions.

Suppose, further, that this system is also required to be interoperable with several other

information systems that have been recently transitioned to OOT and are interacting using

the CORBA (Common Object Request Broker Architecture) distributed OO protocols. In

addition, budgetary constraints project decreasing funds for maintaining the same basic

functionality of this system augmented with the additional interoperability requirements.

Thus, there are budgetary pressures for a transition to a system of lower operating costs,

there are time pressure costs to effect the transition before the old hardware maintenance

contract must be renewed, and there is some reason to consider a transition to OO technol-

ogy in order to facilitate meeting interoperability requirements. In such a context, OO

wrapping techniques may be the key to transitioning the legacy system to a partially mod-

ernized one within the given constraints on budget and within the time constraints.

Some system wrapping may be the most effective strategy in cases in which,

although the reengineering is not especially difficult, the time pressures and resource limi-

tations do not allow full reengineering within a required interim modernization timeframe.

Alternatively, some whole systems may be so large or complex that reengineering may be

too daunting a task to tackle all at once. In such situations, wrapping of subsystems could

provide the basis for an incremental reengineering in which decomposable subsystems and

components are first identified and wrapped with standardized interfaces, followed by

incremental reengineering of these wrapped objects.

1 Other techniques, such as code translation, or database modernization, may also be effective for interim
modernization of some legacy system components, as discussed in [BLSM93].

14

Another situation in which wrapping may be indicated arises when a legacy system,

or some portion thereof, is expected to become obsolete within the relative near term. In

such cases, a full reengineering effort may be a waste of resources, since the system might

no longer be needed by the time it could be reengineered. But it may not be possible to leave

the legacy system completely unaltered for its remaining lifetime due to incompatibility

with interacting AISs that are modernized prior to its termination. Thus, wrapping could be

a cost-effective means of ensuring short-term compatibility without wasting the efforts of

reengineering obsolescent software.

15

3. SYSTEM MIGRATION STRATEGIES

In this chapter, we view the migration process as a whole and examine how wrap-

ping may fit into four broader strategies for entire system migrations, before getting into the

details of different kinds of wrapping. The four strategies are divide-and-conquer, divide-

and-wrap, unite-and-conquer, and one-shot rebuild. In the next chapter, we focus more

locally on different types of components in legacy systems, describing how wrapping may

be used to facilitate their migration to a modernized system.

3.1 DIVIDE-AND-CONQUER

One general strategy for AIS migration, called “divide-and-conquer” [TAYL92],

proceeds incrementally, dividing legacy subsystems and applications into those selected for

immediate conversion to OOT and those that are not. The most suitable candidate or can-

didates are converted and integrated with the existing systems, and the process is repeated

until either the entire system or all suitable parts of it are converted to OO form. This sup-

ports a staged transition, which is ordinarily more manageable and involves lower risk than

attempting to convert an entire system at once.

Wrapping could participate in this strategy by providing temporary modernization

of some system components to ease their integration with fully converted components. Fig-

ure 5 on page 16, for example, illustrates a divide-and-conquer modernization increment

for a legacy system consisting of four application programs, AP1, AP2, AP3, and AP4, and

three databases, DB1, DB2, and DB3. Application program AP1 is wrapped whole as a sin-

gle object. AP2 is completely reengineered as an OO program. The databases, DB1 and

DB2, are both wrapped whole to provide suitable interfaces for data access from the reengi-

neered AP2. AP4 is slightly modified to access its data through the wrapper of DB2. AP3

and DB3 are left unchanged.

However, leaving some system components untouched, such as AP3 and DB3, can

pose some integration difficulties, and a mixed traditional and OO system components

could be awkward to support throughout the duration of incremental modernization. This

is a potential drawback to any divide-and-conquer scheme, whether or not wrapping is

16

involved. However, wrapping can help alleviate this problem, as demonstrated by the next

general strategy, which we call “divide-and-wrap.”

3.2 DIVIDE-AND-WRAP

Wrapping can be used quite broadly to effect a complete conversion of the legacy

system to OOT in a single step by wrapping everything that is not fully reengineered.

Wrapped components could then be incrementally reengineered, as feasible, using OO

techniques. Figure 6 on page 17 illustrates this strategy by wrapping all applications and

data except a single application, AP2, which is fully reengineered. In this example, one

application program, AP1, is wrapped and supplemented with a GUI and an additional

DB2

AP1 AP2 AP3

DB3
DB1

AP4

Legacy system:

GUI2

AP1

DB2

DB1

Modernization increment:

DB3

AP4*

Figure 5. Divide-and-Conquer With Some Wrapping

AP3

User I/O User I/OGUI2

User I/O User I/O

17

object/class structure, as shown. Two databases, DB1 and DB2, are wrapped separately.

One subsystem, consisting of database DB3, application program AP3, and its user inter-

face, is wrapped in its entirety, augmented with a GUI and reconnected through its new

wrapping methods to the reengineered application AP2 and to external information sys-

tems. One application, AP4, is simply wrapped and reconnected via methods to its connect-

ed database DB2 and a calling application (the reengineered AP2). This migration system

then consists of objects of a wide range of granularity, from simple GUI objects and domain

objects to program objects, database objects, and a whole subsystem object.

Figure 6. Divide-and-Wrap Migration Strategy

AP1 AP3

DB3

GUI2

DB2

DB1

AP4

Legacy system:

AP4

GUI1 GUI2

AP1

External
AIS

External
AISAP3

DB3

DB2

DB1

OO migration system:

AP2

User I/O

User I/O

GUI3

User I/O

18

This strategy eases integration of all the pieces at different stages of transition since

the methods interfacing wrapped objects can perform any necessary translations between

legacy and modernized components. It offers flexibility in scheduling the transition incre-

ments through variations in both the amount of reengineering and the granularity of the

components wrapped. In some cases, whole subsystems may be wrapped for a lower cost

transition stage, while wrapping may be executed at a finer level during transition stages

when more time and staff resources are available.

A migration system resulting from such wrapping and reengineering procedures

can enjoy multiple immediate advantages over the legacy systems, such as the following:

• Conformance with standardized data definitions

• Improved interoperability with other AISs

• Greater ease of user operations through new GUIs

• More effective display of information through new GUIs

• Functional consolidation of multiple legacy systems in one migration system

It can also benefit in the long term from the following:

• Improved maintainability of reengineered code

• Lowered maintenance costs of fewer systems

• Eased restructuring of internal data through encapsulation

• Eased modification of legacy code through encapsulation

• Potential reuse of objects (reengineered or wrapped)

Software wrapping can thus ease the transition of legacy AISs to migration systems that

are fewer, easier, and less costly to operate, and easier to modify, fully modernize, and

maintain.

The principal drawback to this general transition strategy is that wrapping large por-

tions of a system may require considerable rework (of object hierarchies, methods, and data

structures) when these components are unwrapped and decomposed into more meaningful

objects. Simply wrapping a whole program or database as an object cannot be expected to

create objects that correspond well to the real-world entities that are the natural objects of

interest in our information systems. When these wrapped objects are unwrapped and

decomposed into constituent domain objects and methods at a later stage of migration, it

19

will be necessary to rewrite their previous access methods and all messages for them from

other parts of the system. More extensive initial OO analysis can support an alternative

strategy that promises to reduce both the revamping of object hierarchies and the rework of

messages over the whole course of system migration, as discussed in the next section.

3.3 UNITE-AND-CONQUER

A “unite-and-conquer” strategy [TAYL92] achieves a unification of system applica-

tions and databases through a common OO framework that organizes access to legacy code

and data as well as to new and reengineered OO system components. Such a framework can

be constructed as part of developing business or enterprise models of the business activities

supported by the legacy information system.1 OO business models are portrayed in

[TAYL92] as a sort of intermediate layer in a migration system that mediates between new

applications and object data stored either in legacy databases or in new OO databases.

Applications would send messages to business model objects requesting attribute data that

the objects retrieve from the databases. Some existing applications might be replaced

entirely by the business model or by applications built on top of it.

Legacy code can also be modified to access its data through the business models,

thereby encapsulating the data and rendering the legacy code immune to disruption from

modernizations of the data stores. This conception of unite-and-conquer is illustrated in

Figure 7 on page 20. The business models are illustrated by an oblong region containing

the classes/objects of the models and their interconnections. Illustration of the connections

from modernized code to the business model and from the business model to legacy data-

bases is simplified with single lines representing the multiple connections to and from indi-

vidual objects in the models. The reengineered version of application AP2 is shown with

both direct and mediated access to the database, DB1, although even its direct access is

mediated by its own objects, effectively maintaining the encapsulation of the data in DB1.

While none of the legacy data stores are altered in this example, it is quite consistent

with this strategy to directly modify the data stores. Databases could be encapsulated as

objects or upgraded to full OO databases. Further encapsulation of the databases in the

example, however, would be of little or no advantage. Mediation of database access by the

objects of the business model already encapsulates the databases at a finer granularity than

simply wrapping them whole as objects. Upgrading the legacy databases to full OO data-

1 See [TAYL92], Chapter 6, “Creating an Object-Oriented Information System,” for more on business mod-
els.

20

bases may provide some advantages in terms of maintainability or in access efficiency for

complex objects. However, it is quite feasible to retain a legacy relational database manage-

ment system (DBMS) for the physical storage of the object data of the business models.

Some object-oriented DBMSs actually use this approach to storing the attributes of persis-

tent objects.

Legacy application programs may be transitioned to different levels of moderniza-

tion during a unite-and-conquer migration stage. Figure 7 on page 20 illustrates direct

wrapping of application AP1 augmented by a GUI, full OO reengineering for AP2, and

User I/OUser I/O

DB3DB2DB1

Legacy system:

AP1

Modernization increment:

GUI3

} business
models

Figure 7. Unite-and-Conquer Strategy

AP3*

AP4 } untouched
legacy code
& data

} modernized
code

DB2

AP1 AP2

DB3DB1

AP4

AP3

GUI2

GUI2*GUI1

21

simple database access modernization for AP3. In this last case, the modernized program

AP3*, illustrates another alternative for interfacing legacy code with encapsulated data:

while the program is not object oriented, all calls from it for data access/update are all

replaced by calls to objects in a business model, which then access the database. In fact, all

of the first three applications access legacy data through classes/objects that effectively

encapsulate the underlying databases. Application AP4, in contrast, is left unmodified in

this example, so it does not make use of the business models and continues to access its data

directly from DB2; hence DB2 is not fully encapsulated. A unite-and-conquer strategy

offers many such choices of modernization alternatives, which can be tailored to fit the

available resources and constraints at any particular stage of migration.

Unifying object models provides the unite-and-conquer strategy with substantive

advantages over the previous strategies. These models provide transparent access to the

data stores throughout the whole migration process. This supports incremental moderniza-

tion of the legacy system while minimizing costly revisions to object models and data

access code. Business models provide a new OO perspective on the business domain that

can be helpful in guiding subsequent modernization phases. Business model objects should

expect considerable reuse at subsequent phases of migration, and possibly even in other

systems, thus lowering costs of subsequent migration activities. The business model also

provides a core of system objects whose use can accelerate development of new applica-

tions, if they are needed.

However, developing business models can be a time-consuming analysis task for

large systems since the essential business objects must be identified and mapped to the rel-

evant existing programs and/or databases. Thus, a unite-and-conquer strategy can only be

effectively executed at a migration stage when sufficient resources are available for this

extensive analysis. When the resources are available, the payoff can be considerable in later

stages of migration. When the resources are not available at a particular stage of migration,

then a more piecemeal strategy can be adopted, such as divide-and-conquer or divide-and-

wrap.

3.4 ONE-SHOT REBUILD

Thus far, all the OO migration strategies considered have been incremental. What

about rebuilding an AIS in one round of the traditional analysis-design-implementation

cycle? Should that be considered as a viable alternative to incremental migration? Ordinari-

ly, no. Some experts [BROD93] refer to this strategy as “Cold Turkey,” and argue convinc-

22

ingly that it carries substantial risks of failure, at least for large, critical AISs. Another OO

author and consultant [TAYL92] goes so far as to advise a business to declare Chapter 7

bankruptcy if taking a one-shot rebuilding approach, since he predicts both will lead to the

same result. Multiple experiences in building large OO systems indicate that, for OO sys-

tems in particular, incremental development is more effective than the classic waterfall

development model (as explained in the companion report on the OO development process

[IDA95a]).

While a one-shot waterfall development has never been recommended for OO sys-

tems, it can be feasible in smaller AISs to apply locally incremental development to the sys-

tem as a whole. Consider, for example, a small information system that is of comparable

size to a single application in a larger system. There need not be much difference between

the reengineering strategy for the small system and the large application. In small enough

such systems, the OO analysis, design, and implementation might well proceed with

respect to the system as a whole, without the need to defer treatment of any particular leg-

acy components (applications or data stores). Such a unified rebuild would still best pro-

ceed incrementally, although the increments would be dictated by the OO analysis rather

than by the legacy system components, and the reengineered system might only be sched-

uled for operations after the entire development was complete. When this sort of one-shot

rebuilding of smaller legacy systems (or subsystems) is feasible, then interim measures,

such as wrapping or gateways, may be unwarranted for that system, although they may still

prove valuable in a broader context of other interacting systems.

One-shot rebuild could also be viable for a large legacy systems if it is very similar

to an existing OO system that has already been implemented, or if it can be constructed out

of existing tested frameworks and repository objects. In other words, if all the main pieces

of a system have already been implemented in an OOT, it may be feasible to put them all

together, tailored for context, to replace a legacy system in a single migration step. With the

growth of object repositories and OO application frameworks, this method of system devel-

opment may be expected to become more commonplace.

23

4. WRAPPER CONTENTS

Legacy software and data can be partitioned in many different ways to isolate those

components that are most amenable to wrapping. Depending upon the criteria discussed in

Section 2.5, analysis might indicate any of the following types of candidates for the con-

tents of an OO software wrapper: function or procedure, data file, database, application pro-

gram, or subsystem. Each of these different applications of wrapping is discussed

individually in the following sections.

4.1 WRAPPING FUNCTIONS OR PROCEDURES

The lowest level of legacy code wrapping is realized when the contents of a wrapper

is an individual procedure or function. This level of wrapping can be appropriate when parts

of a legacy system are being reengineered using OOT, but some of its functions are difficult

to rewrite in OO code, for reasons such as size, complexity, or absence of a required domain

knowledge or expert.

Figure 8 on page 24 illustrates the idea of transitioning a legacy application program

to an OO program in which some of the legacy code is retained beneath the wrappers of its

objects. The two alternatives of direct wrapping and wrapping via domain objects are illus-

trated.

In both cases, only a single function (F4) is selected for wrapping, although many

functions compose the legacy program. The other functions are presumed to be reengi-

neered into operations of objects in the new OO migration program. More generally, any

number of legacy functions may be selected for wrapping or reengineering depending on

their suitability, as discussed previously in Section 2.5 on wrapping criteria.

When feasible, it is best if the wrapper objects are abstracted from the application

domain rather than directly from legacy software components since domain objects

will integrate better with a domain model than will software objects.

24

In the first alternative of Figure 8, the function itself (F4) is transformed into an

object/class in the new OO program, as indicated by the special-purpose wrapping icon.

Such an object would be an instance/subclass of a class of abstract function/procedure

objects. This is the simplest type of mapping from the legacy functions to objects/classes

in an OO migration program, requiring the least amount of OO analysis of legacy software

and requirements.

The second alternative uses a natural domain object or class (here labeled O4) from

the application domain to wrap the function, which is then accessible only through this

object/class. In this case, however, there is no need to “objectify” functions into a class of

abstract objects; the function (F4) does not appear as an object in this system, but merely

as external code accessed by an operation (op2) of a domain object (O4). This is a degen-

erate case of wrapping with a domain object model, in which the wrapping model consists

of a single domain object. When wrapping is performed at the level of functions, it may be

more natural to use a single type of object to wrap a given function, since functions often

have a dominant association with one particular class of objects. In many cases, a suitable

class to which the function applies can be derived from one of the arguments of the legacy

function, which may themselves refer directly to objects or indirectly in virtue of standing

for a property of a class of objects. When wrapping is performed at the level of programs

or subsystems, it is more likely that a multitude of object classes will better represent the

Program

F2

F3
F4

O2

O1

F4

DB1 DB

Figure 8. Wrapping Program Functions

Legacy Program OO Program with function
directly wrapped as an object

F1

OR

O4

O1

DB1

OO Program with function
wrapped by domain object

O3

op1
op2

O3

O2

F4

25

object structure of the legacy code being wrapped.

Creating object wrappers at the level of functions and procedures offers potential

benefits over coarser-grained wrapping at the level of whole programs or systems. Finer-

grained objects can be reused without the encumbrance of ancillary code that may be irrel-

evant in other applications. It can also ease the transition to a fully reengineered migration

system to have already decomposed programs into sets of interacting objects. These advan-

tages of fine-grained domain object wrapping accrue at the expense of higher initial devel-

opment costs compared to some of the coarser levels of direct wrapping. Choices of

appropriate levels of wrapping are likely to be driven largely by the ease of decomposition

of legacy software and the time and cost constraints at any given stage of software migra-

tion. With more time and resources, finer-grain wrapping is feasible, while tight time and

resource constraints may require coarser-grain wrapping. Thus, the OO technique of soft-

ware wrapping provides the migration team with considerable flexibility in meeting these

constraints.

In some cases it may even be advantageous to wrap all, or most, of the procedures

from a legacy program, rather than rewrite any of them initially. This could reduce the ini-

tial transition costs as compared to full reengineering, while providing a whole set of pro-

gram or domain objects that conform to new data standards and might be reused elsewhere.

Full modernization of the legacy code could then proceed in small increments, object by

object, with minimal adjustments to the object structure only when indicated by deeper

analysis.

4.2 WRAPPING DATABASE FILES

 While the database of Figure 8 on page 24 is unchanged from the legacy system to

the modernized one, it too could be wrapped to better encapsulate the data. Individual data

files, data tables, and even whole DBMSs could be wrapped as objects. Figure 9 on page

26 illustrates two alternative ways to wrap an individual data file: directly as a file object,

or as a domain class representing a set of domain objects whose data are contained in the

file. Direct wrapping is represented using the standard direct wrapping icon introduced pre-

Wrapping functions as operations of application domain objects ordinarily provides

a better basis for subsequent migration to a fully reengineered system since legacy

functions/procedures normally correspond better to methods than to domain

objects/classes.

26

viously in Figure 1. Wrapping as a single domain class is the simplest case of object model

wrapping (discussed in Section 2.2) in which the object model consists of a single class. A

single legacy data file might also be wrapped with multiple domain classes if it contains

data for multiple types of domain objects.

Systems with isolated data files independent of any DBMS might be transitioned to

an OO system using either of these alternatives. Simply wrapping the data file with query,

update, and delete methods could serve the purposes of some data standardization require-

ments and encapsulate the data to isolate its internal format from its access methods. A full

transition to wrapping with domain classes might better support reuse and modularity,

though it may incur additional costs from the additional restructuring when developing rel-

evant object classes.

4.3 WRAPPING DATABASE TABLES

Separate database tables within a relational DBMS might also be effectively

wrapped by restricting access to a set of methods defined for each table or group of tables,

as illustrated in Figure 10. Conceptually, the server, or virtual copies of it, is effectively

wrapped with each wrapped database table, since access to such data must be mediated

through its server. Thus, in order to conform with the OO paradigm of encapsulated data,

access to the server would have to be restricted to the developed object methods (either by

design conventions or system constraints). So the server is effectively encapsulated in order

to encapsulate the data it serves. This approach to wrapping data can offer some of the ben-

efits of objectifying a database without performing a full decomposition into primitive

objects.

Legacy data file Data file wrapped
as file object

Figure 9. Wrapping Data Files

domain
class}

Data file wrapped as
a domain class

27

A more natural approach to wrapping data within the OO paradigm breaks up tables

into multiple objects at a finer granularity. If a database table can be identified with a

primary key, such as that of employee in a table of employee records, then it may easily

map into a class corresponding to the general type of that key, e.g., of employees, with each

row in the table corresponding to an object instance of that class. The primary key values

then name the individual objects, while other table entries correspond the attributes of these

objects. This approach is illustrated in Figure 11, where the OO wrapping of each database

Database Server

DBS

Legacy DBMS: Server & Tables

DBS

DBS

Database tables wrapped as objects

Figure 10. Wrapping Database Tables

Database Server

Legacy DBMS: Server & Tables Tables wrapped as domain classes

Figure 11. Wrapping Database Tables as Domain Object Classes

DBSDBS

DBS

28

table is accomplished by the class that interfaces to it. Hence, the domain class is drawn as

constituting part of the wrapper. Attributes of a class instance are retrieved by queries to

tables keyed on the objects of that class. Unlike directly wrapped tables, such domain object

classes may incorporate attributes and methods beyond those required to represent and

access table values. As with other wrappers that create meaningful domain objects, this

approach has the advantages of better integration with an OO system, although it may

involve more work in abstracting the appropriate classes and building the OO interface.

This is the standard procedure for converting database tables to objects when a legacy rela-

tional DBMS is reengineered using OOT.

Such a transition may fall short of a full reengineering in several respects. The data-

base may not be fully restructured to support access between associated objects based upon

associations of a full object model. The formats and contents of legacy database tables may

be retained even though they do not map one-to-one to domain object classes. When such

a mapping does not exist, the domain object wrapping of the database tables is better

viewed as a wrapping of a set of tables (or entire DBMS) by an object model, as illustrated

in Figure 12.

4.4 WRAPPING A DATABASE MANAGEMENT SYSTEM

One potential drawback in separating data tables into distinct objects is that query

response time may be adversely affected when table joins are involved since a join must be

reformulated as multiple queries in order to access multiple tables via their separate encap-

sulating methods. A simpler alternative that might minimize this problem is encapsulating

Database Server

Legacy DBMS: server & database
DBMS wrapped with
domain object model

Figure 12. Wrapping Database Tables with a Domain Model

} new
object
model

DBS } legacy
DBMS
tables

29

the entire database as an object, as illustrated in Figure 13. This approach may retain the

same order of efficiency as queries in the legacy database because the same database que-

ries could ultimately be invoked by the database object’s methods. Complex queries could

be posed directly to the wrapped DBMS object and processed as joins. The only extra query

costs are the small constant-time overhead incurred passing through the methods. The data

are all encapsulated, so that the access methods can be independent of the data storage orga-

nization. Wrapping a whole database system like this can be an efficient means of estab-

lishing compatibility with new interoperable data standards while providing a framework

for transparent incremental modernization of the internal data representation. However, this

approach might have to compromise some of the modularity and encapsulation implicit in

an object model of the database since access to stored objects could not all be mediated by

their distinct classes if complex queries are to be handled directly. Access to objects cannot

always be mediated by the operations of their individual classes if complex queries about

different classes of objects can be sent directly to such a DBMS object wrapper.

4.5 ALTERNATIVE DATABASE ENCAPSULATION MODELS

Object wrapping is not the only or perhaps the most natural means of achieving

encapsulation of a legacy database. An interface or “gateway” to a database can be written

to hide its internal structure1 without conceptualizing the result as an object or set of

objects. Such alternatives achieve very much the same effects as direct wrapping when

applied to databases, since a database wrapped as a single object is unlikely to participate

1 Software gateways, as presented in [BROD93], are discussed in Section 5.1.

Database Server

Legacy DBMS: server & database Wrapped DBMS

Figure 13. Wrapping a Whole DBMS

DBS

30

in any of the other distinguishing features of objects. Wrapping an entire database creates

an object too large and unstructured to be a likely candidate for hierarchies, inheritance, or

reuse. It is not that databases cannot be decomposed into useful hierarchies of objects, but

that wrapping a whole database does not provide any such decomposition. Thus, casting an

encapsulated database as an object offers little advantage over “gateway” conceptions of

encapsulation. While wrapping does provide some uniformity within an OO system, the

principal benefit of information hiding derives from the encapsulation, so that other meth-

ods of encapsulation might do as well.

One interesting proposal using object models for database encapsulation is the

“three-tier solution” for the problem of maintaining database integrity within a distributed

information system with heterogeneous databases [LOO94]. This solution involves using a

set of OO database servers as a middle tier between presentation/application software and

the distributed heterogeneous databases of large information systems. This middle tier

would have a central OO object model—a global conceptual schema—that defines a com-

mon global view of shared subsets of all the local conceptual schemas of the databases it

accesses. Such an object model not only encapsulates the data of all the underlying data-

bases, but also functions to enforce system-wide data integrity strengths. Such system-wide

constraints could not all be enforced locally by bottom-tier database servers because they

do not have access to all of the relevant data or knowledge of the relevant applications. The

data encapsulation provided by this scheme can also support incremental transparent mod-

ernization of data stores. This proposal is one more example of how object models can be

useful for wrapping data stores within large information systems.

4.6 WRAPPING PROGRAMS

Entire programs can be wrapped just as well as procedures and data, although

special care may be involved in mapping their I/O interfaces into the OO paradigm. The

interfaces of wrapped procedures or functions are generally straightforward to adapt:

simply replace calls to them by calls (or messages) to their encapsulating methods. Inter-

faces to wrapped data files or databases are simply reconstructed largely by replacing direct

queries and updates with calls to methods that generate them. The interface structures of

legacy programs, in contrast, are typically complicated by their bi-directional interfaces to

users, via keyboard and monitor I/O, or a GUI in more contemporary systems. When the

user interface exchanges I/O directly with an external device (or device buffers), such as a

keyboard and monitor, its treatment within an OO system admits many alternatives. I/O

devices themselves could be remodeled as objects which engage in message traffic with the

31

wrapped program object; the whole interface could be reworked as a GUI in which GUI

elements are modeled as objects; or the user interface could be left alone with some viola-

tion of the OO tenet of encapsulation. Some of these alternatives are illustrated in Figure

14 on page 31.

Another class of alternatives is generated from the technique of wrapping with an

object model constituted of multiple objects. This approach generates object classes and

their instances from analysis of the application domain, interfacing these objects to the leg-

acy application program via either an API or direct calls to the legacy functions or subpro-

grams, as illustrated in Figure 15 on page 32. Such object model wrapping provides finer

granularity in the generated objects and holds more promise for abstracting objects/classes

of lasting value throughout subsequent software migration phases (if any).

If I/O devices are themselves wrapped into objects, then input device objects pro-

vide program input by sending messages to the program’s methods. A program’s output

would then direct output by sending messages that request output services to the methods

of the output device objects. Thus, this approach would require modifying the output code

of the program to call the appropriate display device methods. If user I/O were reworked

using a GUI, then individual GUI objects would communicate with the program object via

messages, assuming an object-oriented GUI.

Database Database

AP

Figure 14. Wrapping Programs as Objects

AP

Monitor

Application
Program

Keyboard Input

Monitor Display

Database

Legacy program &
interfaces

GUI

Keyboard

Wrapped program object
w/ I/O device objects

Wrapped program object
w/ GUI objects

32

Creating a GUI for program I/O, while obviously a more costly alternative, can

provide some unique advantages in the larger context of software migration. In isolating the

I/O from the program, it supports the incremental modification of either one independently

of the other. Monitor displays can be reformatted to take advantage of graphical display

techniques, and programming functionality may be added through the user interface with-

out disrupting the wrapped legacy programs. This latter capability is of special value when

multiple software applications are being migrated to a single encompassing application. In

such cases, which are expected to dominate the DoD software migration program, a single

existing system may be selected as a basis for the targeted migration system. These selected

legacy systems cannot always be expected to include all of the functionality of the deselect-

ed systems. In many cases, a legacy system selected for a migration system target will

require additional functionality in order to fully meet the requirements of all the legacy

systems being replaced. In such circumstances, the separation of program from user inter-

face can provide the framework for augmenting the selected legacy system with minimal

disruption to the original code. The combination of wrapping legacy programs and inter-

Database

} new
object
model

} legacy
program

API

Application
 Program

GUIKeyboard Input

Monitor Display

Database

Legacy program & interfaces

API

Database

Legacy program wrapped w/
object model, and GUI

} new
graphical
interface

Figure 15. Wrapping Programs with Object Models

other
programs

Application
Program

33

facing them to a GUI may thus provide the most effective framework for a staged migration

of legacy systems in many such migration contexts.

4.7 WRAPPING SUBSYSTEMS

The next level of complexity of wrapped software/data objects is wrapping sub-

systems where the scope of the wrapper is expanded to include one or more data stores

along with a program, or programs, as illustrated in Figure 16. The user interface for such

wrappers admits of the same variety of treatments as do the wrapped programs just dis-

cussed; I/O may use the legacy procedures filtered through the wrapper interface, or a sep-

arate object-oriented GUI may be created, as illustrated. The separation of the user interface

into a GUI, even a primitive one, can be advantageous for independent modification of

interface and program functionality, as discussed previously.

 This level of wrapping is least disruptive when the data stores wrapped with the

program are used exclusively by them. Otherwise, the encapsulation of the data created by

wrapping it with the rest of the subsystem would require all other access to this data to be

mediated by the wrapper. Thus, any external access routines for such a wrapped database

would have to be rewritten to access it via the wrapper.

AP

DB

Figure 16. Wrapping Program and Data Stores as an Object

AP

Monitor

Application
Program

Keyboard Input

Monitor Display

Database

Legacy program
& interfaces

GUI

Keyboard

Wrapped program & data-
base w/ I/O objects

Wrapped program & data-
base w/ GUI objects

DB

34

The most complex of wrapped software objects can encapsulate entire software sys-

tems or subsystems, including a user interface along with application programs, and data-

bases. Such a software subsystem might be selected for wrapping if it was too challenging

to decompose at a given stage of migration but needed a coherent interface with other com-

ponents of the larger system. Figure 17 illustrates the transition from a legacy system to a

migration system in which an entire subsystem, consisting of database DB3, application

AP3, and its graphical user interface GUI3, is wrapped as an object. The database, DB3,

wrapped in with this subsystem is uniquely accessed by the associated program, AP3, so

that wrapping does not require any changes to its access. In this example, the new interface

GUI3* has been added outside the wrapper of the subsystem in order to establish uniformi-

ty of user interface with a new system-wide standard.

Figure 17. Wrapping Entire Subsystems

AP3

DB3

Legacy subsystem:

External
AISAP3

DB3

OO migration subsystem:
GUI3*

Other
programs

External
AIS

GUI3

GUI3

Other
programs

35

5. ALTERNATIVE ENCAPSULATION TECHNIQUES

Much of the benefit of the wrapping technique derives from its encapsulation of

wrapped legacy software or data. OO wrappers, however, are only one means of achieving

encapsulation. To provide a broader perspective on encapsulation, we discuss some alter-

native conceptions of encapsulation for legacy systems. These conceptions may also con-

tribute to AIS migration strategies whose goals include incorporation of OOT, although

they need not be object oriented in themselves.

5.1 GATEWAYS

 Gateways are described by Brodie and Stonebraker [BROD93] as software mod-

ules placed between operational software components that control communications

between them. Gateways are discussed as the main device of their methods for incremental

migration of legacy information systems. Gateways can insulate software components on

one side from changes made to legacy components on the other side, thereby supporting

incremental modification of legacy components without disrupting the rest of an informa-

tion system. The three types of gateways in Figure 18 on page 36 are distinguished by their

placement within an information system: (1) a database gateway between a database and an

application; (2) an application gateway between an application and a user interface; and (3)

an information system gateway between a whole information system and the users (and any

interacting AISs).

Gateways are very general types of software mediators: they can achieve informa-

tion hiding in multiple directions, they can be formulated within any type of language or

programming paradigm, and they can mediate between many different types of software

components, e.g., conventional programs, modules, functions, databases, interfaces, and

users, as well as objects. In this respect, a gateway can be seen as a generalization of a wrap-

per, as a wrapper establishes a one-way gateway through its methods into a software com-

ponent in creating an object. The wrapping of methods around a legacy software

component can be considered a type of gateway to that component. But gateways need not

be restricted to containing a single object. The OO implementation of an entire business

36

model, as illustrated for the unite-and-conquer strategy of Figure 7 on page 20, can be

viewed as a type of gateway, in this case a database gateway between the modernized code

and the legacy databases. A gateway with this type of structure, however, does much more

than simply encapsulate the underlying legacy data: it provides a structure for new applica-

tions and for transferring the functionality of legacy programs to modernized software (e.g.,

business objects).

Even gateways without any sort of object orientation might be used effectively as

part of a migration to an OO system. Gateways might be written in a non-OO language in

early stages of a migration project because of the greater familiarity and confidence with

that language by the available software engineers. Such non-OO gateways could still sup-

port transparent incremental migration of legacy programs and data to OO systems by iso-

lating different levels of the system from each other. Eventually, any such gateway would

Figure 18. Gateway Types and Placements

Legacy Interfaces,
 Applications

Legacy Data

APn

IS Gateway Application Gateway Database Gateway

SIn

IS

End
User

UIn

APl+1

SIl+1

IS

End
User

UIl+1

...
SI1 SI1... UIl+1 UIl+1...

End
UsersISs

End
User

End
UserIS IS

Legacy Applications

Legacy Database Service

37

have to evolve towards an OO model in order to support communication with objects on

different sides of the gateway.

Gateways may, of course, also be used for migration of legacy systems to modern-

ized system without any object orientation. For such projects, the gateway’s isolation of

software components from changes can support an orderly incremental transition to the

goal system, whatever software paradigm is used. Much greater depth on alternative migra-

tion methods utilizing gateways can be found in [BROD93].

5.2 DATABASE VIEWS

One very common method of data format hiding that deserves some mention is pro-

vided by the alternative views of data supported by relational database servers. A relational

database typically provides different views of its data to different sets of users in order to

support access security constraints, as well as to provide convenient organization of output

data. These views can hide the underlying logical database model; a user’s view of a single

table schema, for example, can hide a logical model composed of multiple relations. Thus,

such views may be said to encapsulate the underlying logical structures, which may change

while the views are unchanged. However, this sort of encapsulation is quite limited within

an ordinary relational DBMS. Typically, user views are restricted to tables of data elements,

and the data elements themselves cannot have much structure, being restricted to standard

database types.

Thus, relational DBMS views do not ordinarily support information hiding or

encapsulation to the full extent found in OO systems. View mechanisms may still be useful

for providing a perspective on relational tables that makes them look like object attributes,

so that a relational DBMS may be used to store attributes of persistent objects. But the rela-

tional DBMS itself will not support the polymorphism or full data hiding capabilities of an

OO wrapper, a gateway, or an object model. Furthermore, a relational DBMS is, by design,

limited to accessing data from its own data stores. So, it does not provide the type of encap-

sulation that will support transparent transition to genuine OO databases. Thus, the view

mechanism of a relational DBMS by itself does not, in general, support the type of data

encapsulation that will ease the migration of legacy databases. OO wrappers around rela-

tional DBMS tables, in contrast, support robust encapsulation of data, as discussed previ-

ously and in greater depth in Chapter 6.

38

39

6. WRAPPING IMPLEMENTATION

In this chapter, we elaborate on wrapping strategies using examples, and develop

guidelines on how they might be implemented in Ada. The examples presented here illus-

trate the specific code-level details for a specific system environment. For similar environ-

ments, these example codes may serve as templates since all code has been tested and

verified. In other cases, the examples illustrate a variety of code-level techniques for wrap-

ping which may be applicable depending on the environment.

Since Ada 95 does not have validated compilers at the time of this writing, all OO

migration examples here are implemented in Ada 83 which has readily available validated

compilers. Due to the general upward compatibility, most of the example code should exe-

cute under any validated Ada 95 compiler. Because Ada 83 is not a fully object-oriented

language but only object based, certain aspects of the OO features of inheritance and poly-

morphism have to be explicitly coded. The various alternatives for coding OO features in

Ada 83 are explained in [IDA95b]. Most of the legacy application examples used here are

based on Cobol, the dominant information processing language of the past several decades.

Examples using Fortran, C, and Assembler are also included because they too have been

used in implementing legacy systems.

This chapter begins by examining various constraints that existing DoD legacy sys-

tems may impose on migration systems when attempts are made to retain some parts of

them. Then the basic prerequisites for any particular application of wrapping technology

are reviewed. Program functions are the first class of software components whose wrapping

implementation is described. Several examples of wrapping using Ada interface pragmas

are given for functions or subprograms written in the Cobol, C, and Fortran languages.

Next, a simplified scenario is presented of a legacy migration situation as a basis for illus-

trating wrapping techniques. Details are provided on wrapping a data file and a program

from the legacy system using Ada interface pragmas. Complete code for this example is

provided for reference in Appendix A.

40

When interface pragmas from Ada to a legacy programming language are not sup-

ported by the migration environment, alternative techniques exist to support this interface.

Several such techniques are described: use of common areas to exchange information, calls

through operating system services, and calls through intermediate languages. Next, the

details of wrapping databases, focusing on the interface between Ada and SQL are dis-

cussed. Finally, we describe the basics of the new language bindings in Ada 95 which great-

ly simplify the interfaces to foreign languages, easing the implementation of wrapping in

Ada.

6.1 LEGACY ENVIRONMENT CONSTRAINTS

Large portions of DoD legacy systems include obsolete hardware, technology, and

systems which were designed almost 30 years ago and are often poorly documented. A

sample of several legacy information systems are listed in Table 1. Many of these decades-

old designs are pushing the limits of their engineered capabilities and, as such, cannot be

readily adapted to open architectures and current technologies. For example, many of the

systems use memory overlays managed by the application program. Although innovative

at the time, such memory management techniques make it very difficult to adapt to new

architectures and technologies since many contemporary system architectures do not sup-

port the older memory overlay technique. Such constraints in legacy systems create special

challenges when migrating them to new platforms without massive reengineering. The soft-

Table 1. Examples of Legacy Environments

System Languages
Data Handling
Systems

Operational
Environment

Defense Civilian Personnel Data
System

Burroughs
assembly and
home-grown
procedural lan-
guage: Samuel

Home-grown
database
management
system

Multiple
sites using
remote
access

Defense Civilian Pay System Cobol IDMS/R

Marine Corps Total Force System Cobol and
Assembly

VSAM and
Adabase

Composite Health Care System MUMPS Fileman

Medical Performance Factors MUMPS Fileman

41

ware wrapping technology may offer cost-effective solutions during rapid turnaround mod-

ernization for some legacy systems. Other legacy systems, however, may be too enmeshed

in obsolete technology for wrapping within modernized software and hardware environ-

ments.

Decisions about whether and how to wrap various components of a legacy system

will depend on the system-specific situation in addition to general criteria outlined previ-

ously. For example, legacy systems written in Cobol for IBM hardware and networking

relied heavily on the Customer Information Control System (CICS) communication pack-

age which is embedded in the operating system. In such an environment, Cobol applica-

tions make calls to the operating system and supply the pointer for the data structure to

handle file system and/or terminal I/O. The CICS intern communicates with the hardware

and I/O managing the terminal and file system. Such operating system dependencies are

found to be common in many legacy systems. When present, these dependencies can pose

difficulties during porting one or more parts of a legacy system to current generation plat-

forms. As a result, all such operating system dependent calls may have to be rewritten in

order to migrate a legacy system to a new platform.

Vendors like the Digital Equipment Corporation (DEC) and IBM often provided

extensions to high-level languages (e.g., Cobol, PL/1) to facilitate task and program man-

agement, terminal handling, database access, and I/O handling. Legacy applications tradi-

tionally relied heavily on these extensions to achieve high performance since many of these

extensions are not directly supported on migration platforms and may create potential bar-

riers to moving components of legacy systems. When a legacy system’s Cobol extensions

are not supported on a migration system platform, the portions of code that use the old

extensions will have to be re-implemented before the legacy code can run under the migra-

tion environment.

When legacy systems are tightly coupled with the hardware, operating system,

communication system, terminal handlers, etc., of an obsolete legacy environment, it may

be best not to wrap their components within a modernized hardware-software environment.

In such cases, a client-server strategy should be applied if a suitable interface can be estab-

lished between the legacy system and the migration system. Under this approach, a legacy

system (or components thereof) could operate as a stand-alone client-server and interact

with other client applications using a messaging system.

An alternative approach can be based on identifying components of the legacy sys-

tem that had little to moderately complex system-specific barriers to wrapping and salvag-

42

ing them for use as wrapped components in a modernized OO system. In this case, the

wrapped legacy functions and the new system will coexist in the same computer system.

Naturally, when a legacy system contains substantial system-specific barriers to wrapping,

this will result in less salvageable legacy code.

If a translator can be developed that flags system-specific portions of legacy code

and maps them into their equivalents in the migration system, much legacy code can be sal-

vaged and the development effort can be accelerated. In some cases, a fairly uniform and

semi-automatic translation procedure may be possible for porting code from a legacy envi-

ronment to a migration target environment. Currently, several domain-specific commercial

products are available to facilitate such porting.

The best approach for handling system-specific barriers to wrapping will obviously

depend on the specifics of the legacy system and its intended migration environment. Alter-

native approaches should be analyzed relative to the resources, costs, quality, interoperabil-

ity, and migration deadlines for a particular migration system.

6.2 WRAPPING PRELIMINARIES

Wrapping is a special activity of those software migration projects that incorporate

object wrapping technology. Thus, its success depends on the execution of several prelim-

inary stages of software engineering. A number of activities should be performed before

proceeding to the details of wrapping implementation:

• Perform functional process improvement (DoD Directive 8020.1).

• Select system migration strategy.

• Perform OO analysis and OO design, including object modeling.

• Select levels of abstraction for wrapping.

• Select specific wrapping candidates.

• Select OO programming strategy.

DoD policy [DOD92] requires that a functional process improvement exercise be

conducted before the initiation of all systems reengineering activities. Since migration of a

legacy system may involve reengineering in addition to wrapping, one may have to perform

a functional process improvement exercise as well before finalizing selection of the candi-

date legacy components for wrapping. The results of functional process improvement may

affect the suitability of a legacy component wrapping candidate, based on the findings of

43

the exercise of its obsolescence or need for modifications. In general, legacy systems that

require extensive modifications are ordinarily poor candidates for wrapping, since modifi-

cation of such existing code and/or data might be just as costly or more so than a complete

reengineering of the system.

A system migration strategy determines the general guidelines for migration,

including the number of transition stages and the relative proportions of different transition

modes applied at each stage. Software wrapping is one of those transition modes, along

with reengineering, code modernization, and the simple retention of a legacy system com-

ponent. Alternative system migration strategies utilizing different mixes of transition

modes (as discussed previously in Chapter 3) are divide-and-conquer, divide-and-wrap,

unite-and-conquer, and one-shot rebuild.

Except for one-shot rebuild, all are incremental strategies, allowing modernization

to proceed in stages in which more legacy components are modernized at each stage. Wrap-

ping may be used as a part of any incremental strategy to encapsulate a legacy component

for ease of integration with the modernized components. Selection of a migration strategy

begins the determination of the extent of application of wrapping in the migration process.

Strategies like divide-and-wrap, for example, are committed to wrapping all legacy compo-

nents that are not reengineered at a particular stage. The migration strategy should also indi-

cate the type of wrapping planned, whether it is wrapping components as objects or

wrapping them as domain object models, as explained previously in Chapter 4.

OO analysis and design result in an object model that defines the intended object’s

structure for implementation. This may involve OO analysis aimed towards process

improvement requirements, as well as reverse engineering of the legacy application (as dis-

cussed in Chapter 5). The object model may be developed to different stages of completion

during different phases of system migration based on the system’s migration strategy. A

strategy that commits to wrapping with object models may result in a complete object mod-

el for the entire domain during the migration phase. Modifications to this initial object mod-

el are to be expected during the subsequent stages when previously wrapped components

are reengineered using OO technology. This is typical of the successive refinement of

object models during any incremental OO software development. Performing the initial OO

analysis for the entire domain may ease the transition from one stage to the next and mini-

mize the disruption to the initial model. Less comprehensive OO analysis in the initial tran-

sition stage can lower the costs of that transition at the expense of greater overall costs due

to disruptions during the later stages. In any case, the extent of OO analysis performed prior

44

to wrapping can greatly affect the structure of wrappers created and the ease of subsequent

reengineering and integration of the content in those wrappers.

Two principal criteria must be considered in order to identify the candidates for

wrapping: Is the wrapping feasible and is it justified? Feasibility is determined largely by

the modularity of the candidate component and its support within the migration environ-

ment, as discussed previously in Chapter 4. Justification for wrapping, as contrasted with

reengineering a legacy component or leaving it untouched, depends on a wide variety of

factors, including quality of documentation on legacy component, departure of domain

experts, complexity or fragility of code, size of code, resource limitations, expiring hard-

ware and software contracts, and interoperability requirements.

Once a candidate for wrapping has been identified, the appropriate level of abstrac-

tion for wrapping must be determined: a subsystem might be wrapped as a single compo-

nent or wrapped as many separate parts; a program might be wrapped as a whole or

decomposed into multiple functions or procedures for separate wrapping; or a database

might be wrapped as a whole or its tables or files may be wrapped individually. Table 2,

“Wrapping Guidelines,” on page 45, provides some general guidelines on wrapping a leg-

acy system at various level of abstraction. Decomposition of components and wrapping at

lower levels of abstraction offers the benefits of modularity though at the costs of higher

wrapping transition overhead. Wrapping many small functions, for example, could take

more time and effort than simply reengineering them for the new environment—therefore,

this approach is not recommended. More generally, the costs and benefits must be weighed

in determining a reasonable level of abstraction for wrapping each wrapping candidate. In

some cases, candidates may be rejected after all of the costs have been fully accounted for.

Actual implementation of wrapping requires selection of an OO programming strat-

egy, including the programming language and the OO style guidelines for implementing

classes and objects within it. Although Ada 83 supports encapsulation, the support for

inheritance is limited, and the support for polymorphism is deficient compared to most

object-oriented languages like C++ or Smalltalk. Thus, fully OO programming within Ada

83 requires selection of implementation strategies for inheritance and polymorphism. It is

preferred for its high levels of encapsulation and modularity. Its main weakness lies in the

use of unchecked type conversion to extend class attributes in subclasses. The viability of

this technique depends on the Ada compiler implementation of data record modeling and

access types. However, this implementation dependency is not a problem for the majority

45

of Ada 83 implementations, and such code can ordinarily be ported between compilers

without modification.

6.3 FUNCTION WRAPPING IN ADA

One of the simplest forms of wrapping is to call functions written in another pro-

gramming language. In most cases, individual functions are compiled and mapped under

the same operating environment using the same linker. The examples of this section illus-

trate how an Ada program calls a function or procedure that has been implemented in a dif-

ferent programming language. The structure of the various segment of the software is

shown in Figure 19 on page 46.

Developing an interface to an external function callable from Ada requires the fol-

lowing information:

• The name of the routine

• The type of the call required

• The data type of each parameter

• The type of access required for each parameter

Table 2. Wrapping Guidelines

Level of
Abstraction

Wrapping Overhead - Comments

Function Overhead is very high. Not recommended unless the
function is unusually complex & difficult to re-code.

Procedure Overhead is high. Recommended but should initiate a
performance evaluation before implementation.

Sub-Module Low overhead. Recommended.

Module Overhead is moderate. Should consider the execution
environment.

Complete
System

Recommended. Should look at client-server model
during implementation.

Data File Highly recommended. Relatively low overhead. Care
should be taken during data modeling in Ada.

Database Highly recommended. Select SQL interface or other
form of binding to database.

46

• The mechanisms needed to pass the parameters

• Whether any of the parameters are themselves routines or the addresses of the

routines

• Whether or not any parameters are optional

Thus, one must transform the requirements in Ada terms, to create an equivalent

Ada subprogram specification and use thepragma INTERFACE and any relevant Ada

import pragmas to import the routine so that the programmer can call it as an Ada subpro-

gram.

Ada supports two types of subprograms:

• Procedures, which can have parameters that are updated within the body of the

subprogram.

• Functions, which return results but cannot update their parameters.

Wrapped routines must be imported into an Ada program before they can be used.

In Ada 83, a generic pragma is provided to enable the programmer to import a routine

developed in another programming language. The syntax of the pragma is

pragma INTERFACE (<Language_name>, <routine_name>)

 Ada package

procedure X

function Y

.

.

Cobol/C/Fortran, etc.

procedure X

function Y

and/or

Figure 19. Calling a Wrapped Procedure/Function/Subprogram

Ada package body

 specification

pragma
 Interface...

pragma
 Interface...

47

The pragma specifies the other language (and thereby the calling conventions) and

informs the compiler that an object module will be supplied for the corresponding routine.

A body is not allowed for such a routine (not even in the form of a body stub) since the

instructions of the routine are written in another language.

Vendors often extend this feature and provide additional pragmas to facilitate the

bindings. For example, DEC Ada includes the following additional pragmas:

pragma IMPORT_PROCEDURE

pragma IMPORT_FUNCTION

When using this compiler, the pragmaINTERFACE is used just to specify the name of the

external routine, whether its a function or a procedure. Then one of these compiler-specific

pragmas (IMPORT_PROCEDURE, or IMPORT_FUNCTION) is used to specify the

details of the imported routine and its connection with a corresponding internal routine.

More specifically, these pragmas include fields for both the internal and external routine

names, the data types of the parameter values, and the mechanism for passing parameter

values. The IMPORT_FUNCTION pragma also supports specification of the result data

type. The examples of this section illustrate the use of these pragmas in wrapping external

Cobol code.

Because many system and utility routines return results and update their parame-

ters, DEC Ada provides an additional pragma specifically to import such subprograms. For

example, in DEC Ada, the pragma IMPORT_VALUED_PROCEDURE in combination

with the pragma INTERFACE enables the user to write an Ada interface that will import a

routine so that it is interpreted as a procedure in the Ada environment and as a function in

the external environment.

6.3.1 Example 1: “Employee_Taxable”

An example of function wrapping is shown in Figure 20 on page 48. In this exam-

ple, an Ada procedure calls a function TAX_CALC written in Cobol. The calling procedure

passes two parameters,Emp_Income and Emp_Deduction, to the called function. The

called function then performs the calculation and returns the result. Integer data types are

used for the purpose of simplicity. Cobol can support complex data types which can then

be specified in Ada. Additional packages, such as ADAR (Ada Decimal Arithmetic and

Representatives) developed by the Ada Joint Program Office, can be used to support data

types not predefined in Ada.

48

The interface components of the calling Ada program are listed as follows:

with ...;

package body Employee_Taxableis

...

function TAX_CALC (EMP_INCOME, EMP_DEDUCTION: integer)

return integer;

pragma INTERFACE (Cobol, TAX_CALC);

pragma IMPORT_FUNCTION (

INTERNAL => TAX_CALC,

EXTERNAL => TAX_CALC,

RESULT_TYPE => INTEGER,

PARAMETER_TYPE => (INTEGER, INTEGER),

MECHANISM => (REFERENCE, REFERENCE));

...

function Tax_Calculation (Self :in Class)return Employee.Money

is

Salary :constant Employee.Money := Emp_Salary (Self);

Emp_Income :constant Integer := Integer (Emp_Salary (Self));

Emp_Deductions :constant Integer := Deductions (Self);

begin

return Employee.Money (Tax_Calc (Emp_Income, Emp_Deduction));

Employee_Taxable

Tax_Calculation

Ada program

Cobol program

pragma Interface
pragma Import_Function

function TAX_CALC

Figure 20. Function Wrapping Example in Ada.

TAX_CALC

49

end Tax_Calculation;

...

end Employee_Taxable;

The called Cobol program is as follows:

IDENTIFICATION DIVISION.

PROGRAM-ID. TAX_CALC.

DATA DIVISION.

WORKING-STORAGE SECTION.

01 INCOME-TAX PIC 9(9) COMP.

01 TAX-RATE-1 PIC 9V99 VALUE 0.16.

01 TAX-RATE-2 PIC 9V99 VALUE 0.28.

01 TAX-RATE-1 PIC 9V99 VALUE 0.31.

LINKAGE SECTION.

01 EMP-INCOME PIC 9(9) COMP.

01 EMP-DEDUCTION PIC 9(9) COMP.

PROCEDURE DIVISION USING

EMP-INCOME EMP-DEDUCTION GIVING INCOME-TAX.

BEGIN.

IF EMP-INCOME <= 20000

COMPUTE INCOME-TAX =

(EMP-INCOME - EMP-DEDUCTION * 2500) * TAX-RATE-1

ELSE

IF EMP-INCOME > 20000 AND <= 40000

COMPUTE INCOME-TAX =

(EMP-INCOME - EMP-DEDUCTION * 2500) * TAX-RATE-2

ELSE

COMPUTE INCOME-TAX =

(EMP-INCOME - EMP-DEDUCTION * 2500) * TAX-RATE-3.

EXIT PROGRAM.

6.3.2 Example 2: “Payroll”

This example is similar to Example-1 and here the type of the passed parameters is

the character type.

Ada implementation for Payroll.Generate_Report routine is as follows:

package body Payrollis

50

procedure REPORT_HEADER (TITLE:in out STRING);

pragma Interface (Cobol, REPORT_HEADER);

pragma Import_Procedure (

INTERNAL => REPORT_HEADER,

EXTERNAL => REPORT_HEADER,

MECHANISM=> (Reference, Reference));

-- Procedure to call Cobol routine

procedure Generate_Reportis

Title: constant STRING(1.10) := “Division ”;

begin

PAY_REPORT(Title);

end Generate_Report;

...

end Payroll;

The template for the wrapped Cobol program is as follows:

IDENTIFICATION DIVISION.

PROGRAM-ID. REPORT_HEADER.

DATA DIVISION.

LINKAGE SECTION.

01 REPORTTITLE PIC X(10).

PROCEDURE DIVISION USING REPORTTITLE.

BEGIN.

 DISPLAY “Report for “ report_title.

The actual report generating code is not listed for reasons of simplicity.

 EXIT PROGRAM.

6.3.3 Example 3: “Math_Library”

In this example an Ada calling program call function is written in other native-mode

languages. Simple integer addition is shown in the example, although any specialized math

calculation could be wrapped similarly.

--Wrap a Math Library

package body Math_Libraryis

function GETSUM (A, B: Integer)return Integer;

pragma INTERFACE (FORTRAN, GETSUM);

51

pragma IMPORT_FUNCTION (

INTERNAL => GETSUM, -- Ada name

 EXTERNAL => GETSUM, -- external name

 RESULT_TYPE => INTEGER,

 PARAMETER_TYPES => (INTEGER, INTEGER),

 MECHANISM => (REFERENCE, REFERENCE));

...

function “+”(A, B : Integer)return Integeris

begin

return GETSUM (A, B);

end “+”;

...

end Math_Library;

The Fortran-based called routine is as follows:

FORTRAN FUNCTION

integer function GETSUM (I, J)

C FUNCTIONAL DESCRIPTION:

C

C This FORTRAN function calculates the sum of 2 integers

C

 GETSUM = I + J

end

!

! This BASIC function calculates the sum of 2 integers

!

BASIC FUNCTION

function integer GETSUM (integer A,B)

 GETSUM = A + B

 functionend

;

; This MACRO function calculates the sum of 2 numbers

;

MACRO FUNCTION

.ENTRY GETSUM, ^M<> ; null entry mask

52

 CLRQ R0 ; clear R0 and R1

 ADDL3 @4(AP), @8(AP), R0 ; obtain sum

 RET

 .END

6.4 EXAMPLE SCENARIO

The main goal is to extend the life of an existing Cobol system that maintains com-

pany employee payroll information. This legacy system performs tax calculations, creates

summary reports by departments and for the entire organization, and prints the reports. An

additional goal is to facilitate the addition of new functions, such as printing employee

checks. Figure 21 illustrates the architecture of this legacy system along with the planned

OO system that will wrap it. The new system will generate the same reports and migrate to

Ada. The first of several enhancements is to add the printing of payroll checks.

6.4.1 Legacy Program Scenario

The example legacy Cobol program finds data from the file TESTP.DAT and per-

forms the tax calculation based on the status of the employee and number of deductions. It

does not calculate any tax if an employee is a consultant. This input file contains ASCII

text, as do the output files.The software generates a detailed report organized by depart-

ment, including the name of the employee, the income, employment status, department

number, number of dependents, and tax deducted from the employee’s pay check,. It also

prints out the total payroll and taxes for departments and for the company. The output of

Figure 21. Wrapping of Scenario Legacy System

Employee
Information

Tax Calculation
Report

Tax Calculation

Legacy System

OO System DevelopedChecks

53

the legacy system is written to the file PRINTER.DAT. The legacy program code is provid-

ed in Appendix A, Section A.1, along with the sample data file for input and output.

6.4.2 Migration Program Scenario

The new program will create the same detailed report, and print checks. If the

employee is a consultant, the check is addressed to the home mailing address. Other

employees receive their checks at work, and the checks are addressed to their departments.

Check numbers are printed on the checks. The date printed on the checks is taken from the

system date, and the name and net pay are provided by the legacy system using the existing

program.

The migration program must be ready to accommodate a number of foreseeable

changes. Some future enhancements may replace the input data file with an interface to a

database. The company may begin using temporary employees provided through temp ser-

vices. In addition, Accounting is looking into ways to authorize direct deposit transfers.

6.4.3 Object Model Scenario

Regardless of the language, the desire to migrate to an OO paradigm requires an

object model. OO analysis of the relevant parts of the existing system and the potential

enhancements produces an object model. The new architecture is represented via two mod-

els, namely, object model and dynamic model. Figure 22 on page 54 illustrates an object

model diagram for the desired system.

The dynamic model that prints checks is illustrated by the object interaction dia-

gram in Figure 23 on page 55. The other interaction is to generate the report. Depending on

the OO methodology, these two interactions may be dependent on each other. For example,

if the checks are printed based on the output of the report, then the report must obviously

be printed first. However, if the checks are printed by reading the input file and invoking the

Cobol tax calculation code to determine net pay, then no dependency exists.

6.4.4 Wrapping a Data File Scenario

Almost all legacy systems use file systems. Files are often used to exchange data

from one part of the application to another part. Therefore, one approach to wrapping a leg-

acy system is to pass data through the file system, and invoke the legacy code either from

the operating system or through APIs.

54

The interaction between the legacy system originally developed in Cobol and how

it is wrapped by an Ada 83 based OO system is shown in Figure 21 on page 52. The legacy

system is invoked from the new system, and the report is used to populate the objects in the

new system. The migration system is designed using OO concepts and implemented in Ada

83. The class-wide operation, Print_Checks, is used to illustrate run-time dispatching in

Ada. The package specifications and package bodies are listed in Section A.2 of Appendix

A.

Figure 22. Object Model

Payroll Employee_File

Check

Employee

Consultant Taxable

DB : Employee_File

Starting_Check_Number

Set_Starting_Check_Number
Print_Payroll

End_of_File

Open (Path_Name)
Close
Get_Next (Employee)

Mail_Address : String

Net_Pay

Send_Check_To

Tax : Employee.Salary
Deductions

Net_Pay
Tax_Calculation

Number
Date

Print

Name : String (1..25)
SS_No : Number
Status
Department
Salary : Money

Net_Pay {abstract}
Send_Check_To {abstract}

Accesses

Authorizes

Includes

Pays

Generate_Report
Set File Name

Send_Check_To

55

Payroll
Employee

File Employee Check

Set_File_Name

Set_Starting_Check_Number

Print_Payroll

Open (Path_Name)

Get_Next (Employee)
Construct (...)

Construct (Date, Number, Employee)

Print

Get_Name

Get_SSN

Get_Address

Net_Pay

Close

While not End_Of_File

Do

Figure 23. Interaction Diagram

56

6.5 INTERFACING TO EXTERNAL CODE

Support for interfaces to other languages using pragmas depends on the features of

the Ada compiler and the implementation language of the “external code.” The DEC Ada

compiler used during the previous examples provides good interface support for many pop-

ular programming languages. Other compiler vendors may not provide such features in

their environments. An alternative means of interfacing to “external code” may be required

to achieve the same type of wrapping of legacy code within an OO system written in Ada.

Three techniques for interfaces between Ada and foreign code are as follows:

• Interfacing via operating system

• Sharing common storage areas

• Interfacing through an intermediate programming language

When compiler pragmas are not available from Ada to a target language, then in

most cases the compiler may support a set of APIs through which operating system services

can be accessed. In such cases the operating system will invoke a separate software module

implemented in another language.

When external function calls are not supported by the target Ada implementation,

then sharing of information via common storage to exchange information between the

called and the calling module can become a viable option. Programming languages like

Fortran utilize common memory areas to exchange information among various software

module during runtime. For time-critical applications, common memory can be utilized to

transfer data between the called program developed in Ada to the calling legacy software

developed in Fortran.

An intermediate programming language can provide another means to call foreign

language code when an interface to the target code language is not directly supported by

Ada compiler. In Unix systems, the C programming language often plays the role of an

intermediate language since it is ordinarily supported within any Unix environment. Sever-

al examples are provided in the following subsections that implement the aforementioned

techniques.

6.5.1 Operating System Interface

One way to establish a link from an Ada program to a block of legacy code written

in another language, such as Cobol, is to interface through the underlying operating system.

This form of wrapping is illustrated in Figure 24 on page 57. The figure shows an Ada pro-

57

gram composed of an object wrapper and other related objects, with one of the wrapper

object operations (operation_2) making a call to the Unix operating system which, in turn,

executes an external program which could have been written in any supported program-

ming language, such as Fortran, C, or Cobol.

Executing operating system (or shell) commands from within a program requires

careful definition of the appropriate system calls to ensure format compatibility. Any such

commands will naturally be environment dependent on such things as the compiler and

operating system being used. For the purpose of illustration we define a package

Unix_Shell_Commands that includes several basic commands for interacting with the oper-

ating system, all of which utilize externally defined C functions and data type definitions

from the library packageSystem. This package declares three basic operations, namely,

Unix_Shell, Get_Unix_Environment_Variable, andGet_Unix_Process_Id.

package Unix_Shell_Commandsis

procedure Unix_Shell (cmd:in String; status:out Integer);

-- Execute the input string as a Unix shell command and return the

-- command’s execution completion status.

-- A status value of zero usually

-- indicates successful command completion.

function Get_Unix_Environment_Variable (Name:in String)

Figure 24. Linking via a Unix Shell

Cobol/C/Fortran/...

UNIX System

calls

calls

Program

Ada Program

Wrapper object

operation_1
operation_2
......

.....

58

return String;

-- Retrieve the value of the named Unix environment variable.

function Get_Unix_Process_Idreturn Integer;

-- Retrieve the value of the program’s process ID.

end Unix_Shell_Commands;

The body of the package then implements the operations beginning with a set of

external C functions that are accessed via theInterface pragma, followed by the exported

operations that utilize these external C functions:

with System;use System;

package body Unix_Shell_Commandsis

Unix_Null_Address:constant Address:= NO_Addr;

--- Following are external C function that are imported: -- Retrieve the value of a Unix environ-

ment variable.

-- Unix System library function.

function getenv (Address_Of_Name_With_Null:in Address)

return Address:

pragma Interface (C, getenv);

-- Retrieve the current program’s Unix process ID.

function Getpidreturn Integer;

pragma Interface (C, getpid);

-- Find the length of the multi-terminated string

function strlen (Address_Of_String_With_Null:in Address)

return Integer;

pragma Interface (C, strlen);

-- Execute a Unix Shell command

function System (Address_Of_Cmd_With_Null:in Address)

return Integer;

pragma Interface (C, system);

-- Utility to map the address of a string to a string result

-- Retrieve the Ada string value of a Unix null-terminated string

-- Note: Raises Storage_Error if address is null.

function To_string (Address_Of_First_Char:in Address)

return Stringis

Result : String (1 .. strlen (Address_Of_First_Char));

for Resultuse at Address_Of_First_Char;

59

begin

return Result;

end To_string;

--- Following are the definitions for functions exported from this

--- package:

function Get_Unix_Environment_variable (Name :in String)

return Stringis

-- Retrieve the value of the named Unix environment variable.

Name_With_Null :constant String (1 .. Name’Length + 1) :=

Name & ASCII.Null;

Env_Var_Address :constant Address:=

getenv (Name_With_Null(1)’Address);

begin

if Env_Var_Address = Unix_Null_Addressthen

return ““;

else

return To_String (Env_Var_Address);

end if;

end Get_Unix_Environment_Variable;

function Get_Unix_Process_Idreturn Integer is

begin

return getpid;

end Get_Unix_Process_Id;

Procedure Unix_Shell (Cmd :in String; Status :out Integer)is

-- Execute the input string as a Unix shell command and return the

-- command’s execution completion status. A status value of zero

-- indicates successful command completion.

Cmd_With_Null :constant String(1 .. Cmd’Length + 1):=

Cmd & ASCII.Null;

begin

Status:= System(Cmd_With_Null(1)’Address);

end Unix_Shell;

end Unix_Shell_Commands;

60

Note: The calling external programs inUnix_Shell take a string name of an external pro-

gram as input and append a null character at the end before passing its address to the C

function System which initiates execution of the code beginning at that address. It must

also be noted that code interfacing a compiler to an operating system is ordinarily system

specific, depending upon both the operating system and the compiler. This particular code

was tested on only one combination of compiler and operating system. It illustrates the

basic interface concept, although distinct code may be required for different compilers and

operating systems.

6.5.2 Common Storage Areas Interface

When external code is called from Ada without the benefit of direct return values

(as when executed via a Unix shell command), it may be necessary to provide some other

means of communicating results from the external code to the Ada program. One obvious

approach consists of simply writing the results from the external code to a file and reading

those results back from the file after Ada resumes control. Writing and reading files, how-

ever, entails substantial overhead costs and may adversely affect the system’s performance.

An alternative is provided by some Ada compilers (e.g., DEC Ada) in the form of a pragma

identifying certain data as defined in a common storage area accessible from other pro-

grams, as illustrated in Figure 25.

Common_object

Figure 25. Interfacing Using a Common Area

data

data

Ada Program

Cobol/C/Fortran/...

Operating

calls

calls

Program

Wrapper object

operation_1
operation_2
......

.....

System

61

In DEC Ada, the syntax for pragma for defining a common areas is as follows:

pragma COMMON_OBJECT (<internal_name> [, external_designator]

[, [SIZE =>] external_symbol]);

This pragma can be used to associate Ada storage with Fortran or Basic common blocks,

Pascal variables declared with the COMMON or PSECT attribute, and EXTERNAL vari-

ables in PL/I or variables declared with the EXTERN declaration in C programs.

The following example illustrates how to share one storage area with several For-

tran common variables with Ada record variables, where each field of the record corre-

sponds to one Fortran variable.

C FORTRAN declarations:

INTEGER DAY, MONTH, YEAR

CHARACTER*20 NAME

COMMON //BDATE/DAY, MONTH, YEAR // NAME

END

--

-- Corresponding Ada declarations;

package Birthdate_Interfaceis

type DATE is

record

DAY, MONTH, YEAR: INTEGER;

end record;

subtype NAME is STRING (1 .. 20);

procedure Next

(Birthdate :out Date;

Account_Name :out Name);

end Birthdate_Interface;

package body Birthdate_Interfaceis

BDATE: DATE;

ACCTNAME: NAME;

pragma COMMON_OBJECT (BDATE);

pragma COMMON_OBJECT (ACCTNAME, “$BLANK”);

procedure Next

62

(Birthdate :out Date;

Account_Name :out Name) is

begin

Birthdate := BDATE;

Account_Name := ACCTNAME;

end Next;

end Birthdate_Interface;

6.5.3 Intermediate Language Interface

A wrapped object can be called via an intermediate language that has a binding to

Ada. Today, several vendors provide a binding to C. Thus, an Ada object can call a C func-

tion which in turn can call a Cobol/Fortran object. Such a wrapping strategy is illustrated

in Figure 26.

6.5.3.1 Calling C from Ada

An example follows of wrapping a C function in Ada, which was implemented on

the Suns using the Verdix Ada. A key thing to note is that Ada strings have their lengths

managed separately, but C strings are terminated with ‘\0’, so any program passing strings

has to do a conversion. System Address is used in this example, and usually it is desirable

to avoid doing that, but it was a simple way to implement this.

Fortran/Cobol...

calls

calls

Program

Ada Program

Wrapper object

operation_1
operation_2
......

.....

C function

Figure 26. Interfacing via an Intermediate Language

63

package Distance_Wrapperis

function Distance (Left : String; Right : String)return Float;

end Distance_Wrapper;

with System;

package body Distance_Wrapperis

 -- Here’s the declaration of the C “wrapped” function & types.

function Miles_Distant(C1 : System.Address; C2 : System.Address)

return Float;

pragma Interface(C, Miles_Distant);

-- Ada Language RM 13.9(4) allows limiting the types passable.

-- Verdix requires parameter types to be scalar, access or

-- SYSTEM.ADDRESS

Miles_To_Kilometers :constant := 1.61;

function Distance (Left : String; Right : String)return Floatis

Miles : Float;

C1 : String (1..Left’Last+1);

C2 : String(1..Right’Last+1);

begin

C1(1..Left’Last) := Left; C1(Left’Last+1) := ASCII.Nul;

C2(1..Right’Last) := Right; C2(Right’Last+1) := ASCII.Nul;

Miles := Miles_Distant(C1’Address, C2’Address);

return Miles * Miles_To_Kilometers;

end Distance;

end Distance_Wrapper;

6.5.3.2 Calling Fortran from C

Vendors generally place restrictions during interlanguage calls. For example, in

VAX when one calls an external routine as a function, a single value is returned. When one

calls an external routine as a subroutine (a VOID function), values are returned in the argu-

ment list. By default, VAX C passes all arguments by immediate value with the exception

of arrays and functions; these are passed by reference.

The example that follows shows a VAX C function calling a VAX Fortran subpro-

gram with a variety of data types. This example does not extend the previous one to illus-

trate the full concept of calling from Ada through C to Fortran, however, since an

64

environment supporting this full interface chain was not available to the authors at the time

these examples were developed.

For most scalar types, VAX Fortran expects arguments to be passed by reference but

character data is passed by descriptor:

/*

/* Beginning of C function

/*

#include <stdio.h> /* get layout descriptors */

#include <descrip.h> /* declare FORTRAN function */

extern int fort();

main()

{ int i = 508;

 float f = 649.0;

 double d = 91.5;

 struct {

 short s;

 float f;

 } s = {-2, -3.14};

auto $DESCRIPTOR (string1, “Hello, FORTRAN”);

struct dsc$descriptor_s string2;

/* “string1” is a FORTRAN-style string declare and initialized

/* using the $DESCRIPTOR macro.

/* string2 is also a FORTRAN-style string, but here we are

/* declaring and initializing by hand */

string2.dsc$b_dtype = DSC$K_DTYPE_T; /* type is character */

string2.dsc$b_class = DSC$K_CLASS_S; /* string descriptor */

string2.dsc$w_length = 3; /* 3 characters */

string2.dsc$a_pointer = “bye”; /* pointer to string value */

printf (“FORTRAN result is %d\n, fort (&i, &f, &d, &s, &string1,

 &string2));

}

/* end of C program */

C

C Begin the FORTRAN subprogram

65

C

 INTEGER FUNCTION FORT (I, F, D, S, STRING1, STRING2)

 INTEGER I

 REAL F

 DOUBLE PRECISION D

 STRUCTURE /STRUCT/

 INTEGER*2 SORT

 REAL FLOAT

 END STRUCTURE

 RECORD /STRUCT/ S

C We can tell the program to use the length in the descriptor

C or we can tell the program to ignore the descriptor and

C assume the string has a particular length as done for

C string2.

 CHARACTER*(*) STRING1

 CHARACTER*3 STRING2

 WRITE (5, 10) I, F, D, S.SORT, S.FLOAT, STRING1, STRING2

10 FORMAT (1X, I3, F8.1, D10.2, I7, F12.2, 1X, A, 2X, A)

 FORT = -15

 RETURN

 END

6.6 WRAPPING A DATABASE MANAGEMENT SYSTEM

Many legacy information management systems relied on databases to organize, pro-

tect, and store their data. Such database systems might have been designed by the in-house

developers or might have been procured from commercial vendors. In either case, they were

developed using the basic principles of DBMSs. Within DoD, a large number of legacy sys-

tems rely heavily on DBMSs to store and manage their data. Thus, the systems designers

will have to provide a mechanism to encapsulate the legacy systems’s DBMS. Today, most

databases utilize some form of SQL to interface between an application and a DBMS.

Although Ada 83 does not provide a direct binding to DBMS or SQL, one approach is to

create a general binding following McCoy’s strategy [MCC90]. The basic elements of the

strategy include the following:

• Creation of Ada data type

• Interfacing to the external routines

66

• Interfacing to external data

• Linking to external library

Data types in Ada must be created to match those supported by the particular bind-

ing. This may require the use of an Ada representation clause to map a user type to one of

the primitive types available in the SQL.

One can develop Ada subprogram specifications to match those of the interface lan-

guage. A proper interface is then declared to map the Ada templates to the binding routines.

This may be accomplished via pragma interfaces described earlier.

Interfacing to external data may involve the development of special routines that

return the required data objects as parameters with proper format.

Linking to external library is implemented if a set of Cobol or C routines is available

as a part of a library that provides a binding to DBMS. In such cases, proper linkage can be

established by linking to available library routines.

6.6.1 SQL to Ada Binding

SQL has emerged as the industry standard for a relational data access language.

SQL defines a common relational database language that enables consistency across prod-

uct implementations, in the way users, application developers, and to some extent database

designers interface with the products. Although internal mechanisms for representing and

accessing database structures may vary greatly, SQL allows users to deal with one syntax

for invoking those mechanisms.

The major problem with creating an SQL binding is that the developers of applica-

tion software are now faced with two entirely different programming paradigms. A large

amount of application software is procedural and functionally oriented, whereas the SQL

part is used to model the relational algebra required for the database queries. SQL does not

support the strong typing used in Ada; consequently, the application developers either use

the limited set of types or must perform some form of a transformation.

The Ada community identified three viable options for implementing an Ada bind-

ing to SQL [SEI91, DON87]:

• All-Ada binding. SQL queries are modeled with standard Ada statements. For

example, a relation expressed in SQL as a table will create an Ada record type.

67

In this case, SQL reserved words, such asselect and all that are also Ada

reserved words, are renamed in the Ada model.

• Embedded SQL. The SQL statements are included in the Ada application code

to express the relations required for accessing the DBMS. A pre-processor is

then used to translate the SQL statements to their equivalent Ada procedure

calls that will actually make the queries to the DBMS.

• New language. To avoid the mixing of Ada and SQL, a new programming lan-

guage SAMeDL (SQL Ada Module Description Language) has been proposed

[SEI91]. The goal is to bridge the gap between Ada application oriented pro-

gramming and SQL DBMS accesses. The SAME methodology requires that

SQL statements be separated from the Ada application code and encapsulated

in separate modules. The SQL statements are not embedded in the Ada packag-

es, thus isolating the Ada application from the DBMS design and implementa-

tion. SAMeDL is designed to facilitate the construction of Ada database

applications that use the SAME methodology.

These three techniques have their unique advantages and disadvantages, and the

developer can only select the most appropriate approach suitable to the environment and

application.

6.6.2 All-Ada Bindings

 Today, many DBMS and Ada compiler vendors support the all-Ada bindings tech-

nique. The name of the Ada package specification is identical to the name of the SQL mod-

ule. The procedures declared by the Ada specification have names identical to the

corresponding procedures declared within the SQL module. The formal parameters of the

procedures have names identical to those of the SQL module.

This technique is illustrated via an example which accesses a Parts-Supplier data-

base [DATE75]. The simple SQL module contains a cursor declaration and the procedures

open, fetch, and close. The Ada specification module contains the corresponding package

specification. The Ada package Example_Definitions is a domain package in the terminol-

ogy of [GRAH89], and represents a definitional module in the terminology of [CHAS90].

Module Example_Module

Language Ada

Authorization Public

68

Declare Part_City Cursor

For

Select SP.PNO, S.City

From SP, S

Where SP.SNO = S.SNO

And S.Status >= Input_Status;

Procedure Part_City_Open

Input_Status Int

SQLCODE;

Open Part_City;

Procedure Part_City_Fetch

Part_Number Char (5)

City Char (15)

City_Indic Smallint

SQLCODE;

Fetch Part_City into Part_Number, City INDICATOR City_Indic;

Procedure Part_City_Close

SQLCODE;

Close Part_City;

The specification of the Ada interface for the above SQL module is as follows:

with Example_Definitions;use Example_Definitions;

package Example_Definitionsis

type Part_Nbr_City_pairs is

record

Part_Number : Part_Number_Not_Null;

City : City_Type;

end record;

procedure Part_City_Open (Input_Status : Status_Not_Null);

-- creates the relation of part numbers and cities where there --- exists some

-- supplier, with status at least Lower_Bound, of that part in --- that city.

procedure Part_City_Fetch (

Part_Cities : in Part_Nbr_City_Pairs;

Is_Found : out Boolean);

-- Returns the relation created by open

69

-- Found becomes false at end of table

procedure Part_City_Close;

-- Clean up procedure

end Example_Interface;

The parameters to be passed between the application program and the SQL module

should be carefully defined because in Ada the type equivalence is determined statically by

name. The application program and the corresponding database management package must

agree on the names as well as the structure.

6.6.3 Embedded SQL

Embedded SQL deals with the placement of SQL language constructs in procedural

language code. Every vendor treats embedded SQL statements in a different way. For

example, in Oracle’s ProAda, software developers embed SQL statements directly in the

Ada program and then precompile the source. Precompilation causes the embedded SQL

to be translated into ProAda calls, including the runtime library procedures that handle the

interaction between the application software and the Oracle relational DBMS.

For example, if the application wants to issue the following statement:

SELECT ename, sal

FROM emp

WHERE empno = &EMP_NUMBER

The equivalent embedded SQL statement in ProAda would be as follows:

EXEC SQL SELECT ename, sal

INTO:EMPLOYEE_NAME, :EMPLOYEE_SALARY

FROM emp

WHERE empno = :EMP_NUMBER;

In this case, the program must supply a valid employee number, placing it in the Ada host

variable EMP_NUMBER, which must be declared and be in the scope of the embedded

SQL statement. When the statement is executed, the name information and salary informa-

tion that satisfy that query are placed into the Ada host variable EMPLOYEE_NAME and

EMPLOYEE_SALARY.

The following example is a simple Ada program that connects to an Oracle DBMS;

gets and prints the maximum employee number in the EMP table; selects and prints the

department name for a user-provided department number, or prints an error if no such

department number exists; and exits [ORCL92].

70

-- SIMPLE :

with text _io;
-- Note: the precompiler “with’s” the required ORACLE packages

procedure SIMPLE_SAMPLE is
use text_io;

-- declare host and program variables
ORACLE_ID : constant String := “SCOTT/TIGER”;
ENAME : String (1..20);
ENAME_LEN : Integer;
DEPT_NAME : String (1..14);
LOCATION : String (1..13);

SQL_ERROR : exception ;
SQL_WARNING : exception ;

-- Check to see if the last database
-- operation returned any rows.

function EMPLOYEE_EXITS return Boolean is
begin

return (not (ORACLE.ERROR.IF_NOT_FOUND));
end EMPLOYEE_EXITS;

begin -- SIMPLE_SAMPLE
-- Direct the precompiler to insert “if” logic that
-- checks the ORACLE return code and raises an exception
-- if needed.

EXEC SQL WHENEVER SQLERROR raise SQL_ERROR;
-- Check for warnings, such as data truncation, also.
EXEC SQL WHENEVER SQLWARNING raise SQL_WARNING;

-- Connect to ORACLE

EXEC SQL CONNECT :ORACLE_ID;

NEW_LINE;
PUT_LINE (“Connected to ORACLE as “ & ORACLE_ID);
NEW_LINE;

PUT_LINE (“*** ORACLE DEMO #1 ***”);
NEW_LINE;

loop
PUT (“Enter employee last name (CR to exit):”;
GET_LINE (ENAME, ENAME_LEN);
exit when ENAME_LEN = 0;

-- SELECT statements that return one row can use a

71

-- simple SELECT statement. Otherwise, a cursor must be
-- declared for the SELECT, and a FETCH statement is used.

EXEC SQL SELECT INITCAP (loc), INITCAP (dname)
INTO :LOCATION, :DEPT_NAME
FROM emp, dept
WHERE dept.deptno = empt.deptno
AND EMP.ENAME =

(upper (:ENAME(1..ENAME_LEN));

if EMPLOYEE_EXITS then
NEW_LINE;
PUT(“Employee”);
PUT (ENAME(1..ENAME_LEN));
PUT (“ works for department “ & DEPT_NAME);
PUT (“ in “ & LOCATION);
NEW_LINE; NEW_LINE;

else
PUT_LINE (

“Sorry, no such employee (try ALLEN or JONES)”);
NEW_LINE;

end if ;
end loop ;

NEW_LINE;
PUT_LINE (“Bye-by.”);

-- Disconnect from the database.
EXEC SQL COMMIT RELEASE;

exception
-- Turn off error checking, since we do not want
-- to raise an exception when logging out under
-- any circumstance.

EXEC SQL WHENEVER SQLERROR CONTINUE;
EXEC SQL WHENEVER SQLWARNING CONTINUE;

when SQL_ERROR =>
PUT_LINE (“ ** ORACLE ERROR OCCURRED **”);
NEW_LINE;
PUT_LINE (ORACLE.ERROR.MESSAGE);
EXEC SQL ROLLBACK RELEASE;

when SQL_WARNING =>
PUT_LINE (“ ** ORACLE WARNING OCCURED **”);
NEW_LINE;
EXEC SQL ROLLBACK RELEASE;

end SIMPLE_SAMPLE;

72

Today, most of the database vendors such as Sybase, DEC, IBM, and Informix pro-

vide embedded SQL for their Ada compilers or offer such capabilities though their technol-

ogy partners.

6.6.4 SQL Ada Module Description Language

The primary objective for SAMeDL is the partial creation of Ada DBMS applica-

tions where Ada applications are written without any mixed SQL statements, and SAMeDL

modules are written to model the SQL queries. SAMeDL defines an abstract interface, a

collection of Ada declarations through which an Ada program can access the DBMS. The

meaning of a SAMeDL text is given by a translation into an Ada text, an SQL text, or both

an Ada and an SQL text along with the relationship between them.

Figure 27 illustrates an overview of the SAMeDL architecture. A SAMeDL text

may contain some data descriptions and it may also rely on previously processed data

descriptions. The meaning of SAMeDL text may include Ada type and/or subprogram dec-

larations. The actions of the subprograms nominally include calls to procedures defined in

the SQL module language. The meaning of a SAMeDL procedure includes its Ada decla-

ration, an SQL declaration, and the definitions of the input and output parameters of the

procedures declared.

SAMeDL

Data Description

Database

SQL Procedure
Ada Type and

Procedure
Declaration

Ada Application

Figure 27. The Meaning of SAMeDL Text

73

The following example illustrates the SAMeDL module for the SQL Module

described in Section 6.6.2 on page 67.

with Example_Definitions;

abstract module Example_moduleis

authorization Public

cursor Part_City

(Input_Status: Status Not Null)

for

select SP.PNO Not Null named Part_Number, S.City

from SP, S

where SP.SNO = S.SNO

and S.Status >= Input_Status;

is

procedure Part_City_Fetchis

fetch into Part_Cities:new Part_Nbr_City_Pairs

statusStandard_Map;

end Part_City;

The SAMeDL module does not generate an Ada package exactly. It generates an

Ada package Example_Module containing a subpackage Part_City which, in turn, contains

the declaration of a record type, Part_Nbr_City_pairs, and three procedures named Open,

Fetch, and Close. The procedure Part_City_open in the SQL module has become

Part_City.Open.

Recently, two software houses have announced commercial implementations of

SAMeDL. Intermetrics in Cambridge, Massachusetts, has a SAMeDL version for Sybase.

This version is going through beta testing and preliminary information looks very promis-

ing. It is likely that the binding will be sold and supported by the DBMS vendor (Sybase,

Inc.), and the future implementation will be multi-threaded at the client site. Competence

Center Informatik of Meppen, Germany, also has a version of SAMeDL for the Oracle

database.

6.7 ADA 95 INTERFACE TO OTHER PROGRAMMING LANGUAGES

Ada 95 has eliminated the binding problem with other programming languages,

most notably with Cobol and C. This section outlines the standard interface procedures for

74

Cobol taken directly from the Ada 95 Reference Manual [ANSI95]. In the interests of con-

serving space, not all of the interface operations provided for by the interface extension of

Ada 95 are described here. The intent of this section is to outline enough of the new inter-

face standard to provide the reader with clear expectations on its new interface capabilities.

6.7.1 Interfacing Pragmas

A pragma Import is used to import an entity defined in a foreign language into an

Ada program, thus allowing a foreign language subprogram to be called from Ada, or a for-

eign language variable to be accessed from Ada. In contrast, a pragma Export is used to

export an Ada entity to a foreign language, thus allowing an Ada subprogram to be called

from a foreign language, or an Ada object to be accessed from a foreign language. The

pragmas ImportandExport are intended primarily for objects and subprograms, although

implementations are allowed to support other entities.

A pragma convention is used to specify that an Ada entity should use the conven-

tions of another language. It is intended primarily for types and “callback” subprograms.

For example,pragma Convention (Fortran, Matrix); implies that Matrix should be repre-

sented according to the conventions of the supported Fortran implementation, namely col-

umn-major order.

A pragma Linker_Options is used to specify the system linker parameters needed

when a given compilation unit is included in a partition. An interfacing pragma is a repre-

sentation pragma that is one of the pragmas Import, Export, or Convention. Their forms,

together with that of the relatedpragma Linker_Options, are as follows:

pragma Import (

[Convention =>] convention_identifier,

[Entity =>] local_name [,

[External_Name =>] string_expression] [,

[Link_Name =>] string_expression]);

pragma Export (

[Convention =>] convention_identifier,

[Entity =>] local_name [,

[External_Name =>] string_expression] [,

[Link_Name =>] string_expression]);

75

pragma Convention(

[Convention =>] convention_identifier,

[Entity =>] local _name);

pragma Linker_Options(string_expression);

A pragma Linker_Options is allowed only at the place of a declarative_item. The expected

type for a string_expression in an interfacing pragma or in pragma Linker_Options is

String.

The example of interfacing to a pragma available in Ada 95 is as follows:

package Fortran_Library is

 function Sqrt (X : Float) return Float;

 function Exp (X : Float) return Float;

 private

 pragma Import(Fortran, Sqrt);

 pragma Import(Fortran, Exp);

 end Fortran_Library;

6.7.2 The Package “Interfaces”

The Ada 95 defined package called “Interfaces” is the parent of several library pack-

ages that declare types and other entities useful for interfacing to foreign languages. It also

contains some implementation-defined types that are useful across more than one language

(in particular for interfacing to assembly language).

The library package Interfaces has the following skeletal specification:

package Interfaces is

pragma Pure(Interfaces);

type Integer_n is range -2**n .. 2**n-1; --2’s complement

 type Unsigned_n is mod 2**n;

function Shift_Left (Value : Unsigned_n; Amount : Natural) return Unsigned_n;

 function Shift_Right (Value : Unsigned_n; Amount : Natural) return Unsigned_n;

 function Shift_Right_Arithmetic (Value : Unsigned_n; Amount : Natural)

return Unsigned_n;

 function Rotate_Left (Value : Unsigned_n; Amount : Natural) return Unsigned_n;

 function Rotate_Right (Value : Unsigned_n; Amount : Natural) return Unsigned_n;

76

 ...

 end Interfaces;

6.7.3 Interfacing with Cobol

6.7.3.1 Definitions

The facilities relevant to interfacing with the Cobol language are the package Inter-

faces.Cobol and support for the Import, Export, and Convention pragmas with

convention_identifier Cobol.

The Cobol interface package supplies several sets of facilities:

• A set of types corresponding to the native Cobol types of the supported Cobol

implementation (so-called “internal Cobol representations”), allowing Ada data

to be passed as parameters to Cobol programs.

• A set of types and constants reflecting external data representations that might

be found in files or databases, allowing Cobol-generated data to be read by an

Ada program, and Ada-generated data to be read by Cobol programs.

• A generic package for converting between an Ada decimal type value and either

an internal or external Cobol representation.

The library package Interfaces.Cobol is a child package of the package Interfaces,

whose specification includes the following types of declarations:

package Interfaces.Cobolis

pragma Preelaborate(Cobol);

-- Types and operations for internal data representations

type Floatingis digits implementation-defined;

type Long_Floatingis digits implementation-defined;

type Binary is range implementation-defined;

...

function To_Cobol (Item :in String)return Alphanumeric;

function To_Ada (Item :in Alphanumeric)return String;

procedure To_Cobol (Item :in String;

 Target : out Alphanumeric;

 Last : out Natural);

procedure To_Ada (Item :in Alphanumeric;

Target : out String;

Last : out Natural);

77

...

-- Formats for Cobol data representations

type Display_Formatis private;

Unsigned : constant Display_Format;

Leading_Separate : constant Display_Format;

Trailing_Separate : constant Display_Format;

...

-- Types for external representation of Cobol binary data

type Byte is mod 2**Cobol_Character’Size;

type Byte_Arrayis array (Positive range <>) of Byte;

pragma Pack (Byte_Array);

Conversion_Error : exception;

generic

type Num is delta <> digits <>;

package Decimal_Conversionsis

-- Display Formats: data values are represented as Numeric

function Valid (Item :in Numeric;

 Format :in Display_Format)return Boolean;

function Length (Format :in Display_Format)return Natural;

function To_Decimal (Item :in Numeric;

 Format :in Display_Format)return Num;

...

-- Binary Formats: external data values represented as Byte_Array

function Valid (Item :in Byte_Array;

Format :in Binary_Format)return Boolean;

function Length (Format :in Binary_Format)return Natural;

...

-- Internal Binary formats: data values are of type Binary or Long_Binary

function To_Decimal (Item :in Binary) return Num;

function To_Decimal (Item :in Long_Binary)return Num;

...

end Decimal_Conversions;

private

 ... -- not specified by the language

78

end Interfaces.Cobol;

Each of the types in Interfaces.Cobol is Cobol compatible. The types Floating and

Long_Floating correspond to the native types in Cobol for data items with computational

usage implemented by floating point. The types Binary and Long_Binary correspond to the

native types in Cobol for data items with binary usage, or with computational usage imple-

mented by binary.

Each of the functions To_Cobol and To_Ada converts its parameter based on the

mappings Ada_To_Cobol and Cobol_To_Ada, respectively. The length of the result for

each is the length of the parameter, and the lower bound of the result is 1. Each component

of the result is obtained by applying the relevant mapping to the corresponding component

of the parameter.

Each of the procedures To_Cobol and To_Ada copies converted elements from Item

to Target, using the appropriate mapping (Ada_To_Cobol or Cobol_To_Ada, respectively).

The index inTarget of the last element assigned is returned inLast (0 if Item is a null array).

If Item’Length exceedsTarget’Length, thenConstraint_Error is propagated.

6.7.3.2 Example

One of the examples of calling a Cobol program from Ada 95 provided in the Ada

95 Reference Manual is as follows:

with Interfaces.Cobol;

procedure Test_Callis

-- Calling a foreign Cobol program

 -- Assume that a Cobol program PROG has the following declaration

 -- in its LINKAGE section:

 -- 01 Parameter-Area

 -- 05 NAME PIC X(20).

 -- 05 SSN PIC X(9).

 -- 05 SALARY PIC 99999V99 USAGE COMP.

 -- The effect of PROG is to update SALARY based on some algorithm

package Cobolrenames Interfaces.Cobol;

type Salary_Typeis delta 0.01 digits 7;

type Cobol_Recordis record

Name : Cobol.Numeric(1..20);

79

SSN : Cobol.Numeric(1..9);

Salary : Cobol.Binary; -- Assume Binary = 32 bits

end record;

pragma Convention (Cobol, Cobol_Record);

procedure Prog (Item : in out Cobol_Record);

pragma Import (Cobol, Prog, “PROG”);

package Salary_Conversionsis

new Cobol.Decimal_Conversions(Salary_Type);

Some_Salary : Salary_Type := 12_345.67;

Some_Record : Cobol_Record :=

(Name => “Johnson, John “,

 SSN => “111223333”,

 Salary => Salary_Conversions.To_Binary(Some_Salary));

begin

 Prog (Some_Record);

 ...

end Test_Call;

This example could easily be modified to illustrate wrapping with a domain object.

The Ada procedureProg could be defined within a package that specifies a suitable object

class, such as an employee class, and take such employee objects as an argument. The Ada

Prog would need some modification to extract the relevant fields from the employee object

and place them in the proper format of a record for the CobolPROG. Then, the “legacy”

Cobol procedurePROG would be wrapped by the employee class and the interface prag-

mas. We hesitate to present the actual code for such a modification since we have not been

able to test it on an Ada 95 compiler yet, and we are limiting our listings of code fragments

to those that have been tested or officially sanctioned (as in this last listing).

80

81

7. SUMMARY OF GUIDELINES AND ISSUES

7.1 GUIDELINES FOR OO WRAPPING

In the course of investigating alternative strategies and tactics for OO wrapping, a

number of guidelines have emerged for choosing and applying them in a variety of con-

texts. OO wrapping has been identified as an effective technique for encapsulating legacy

software components within a partially modernized migration system. Wrapping can sup-

port staged migration of legacy systems to modernized OO systems as well as the incorpo-

ration of trusted legacy software into new systems. Another application for which wrapping

is recommended is to establish data standardization of legacy code and data without reengi-

neering legacy systems.

When the resources are available, it is recommended to use domain object models

for wrapping legacy components rather than simply wrapping components as software

objects. Such object model wrapping is identified as providing a better foundation for any

subsequent legacy modernization or extensions. Costs of building such object models can

be minimized by judicious abstraction of the domain objects, modeling only those features

that are essential to wrapping.

One reason behind favoring wrapping over reengineering is the presence of any

strong time pressure to modernize a legacy system quickly; factors include the following:

• Expiring hardware and software contracts

• Shift to new platforms

• New functionality requirements

• Requirements for interoperability with other reengineered AISs

• Data item standardization requirements

Other reasons to prefer wrapping to reengineering are as follows:

• Absence of documentation

• Departure of all domain experts

82

• Complexity of code

• Fragility (or brittleness) of code

• Size of code or database

• Staffing resource limitations

Wrapping feasibility depends on conditions of the legacy and target migration environ-

ments, such as modularity of legacy code, and support for interfaces between legacy com-

ponents and the migration OO environment. Under such favorable conditions, wrapping

may be the most effective means of meeting modernization deadlines.

Guidance on overall system migration strategies is also provided. Four different

such strategies are identified. The “one-shot rebuild” strategy is identified as risky for large

systems because it attempts too much reengineering at once. Of the remaining strategies,

“unite-and-conquer” stands out as generally superior due to its use of a unifying object

model of the business enterprise for wrapping multiple software components. These

models can provide transparent access to the data stores throughout the whole migration

process. This supports incremental modernization of the legacy system while minimizing

costly revisions to object models and data access code. Business models also provide a new

OO perspective on the business domain that can be helpful in guiding subsequent modern-

ization phases. Business model objects may also experience considerable reuse at subse-

quent phases of migration, and possibly even in other systems, thus lowering costs of

subsequent migration activities. The only drawback to this strategy is the cost of building

the business model. Hence, this strategy is only recommended for migration stages wherein

sufficient resources are available for this extensive task. In other contexts, a less cohesive

modernization of a legacy system may be all that is feasible.

7.2 LEGACY WRAPPING ISSUES

Wrapping legacy software offers considerable promise of easing the difficult tran-

sition from obsolete legacy systems to modernized systems with the advantages of greater

maintainability, modifiability, and reuse inherent in OO technology. Our investigations into

alternative strategies for designing and implementing software wrapping have identified a

variety of issues which will benefit from further investigation.

Client-server model. This is a powerful paradigm for integrating legacy system

components with modernized ones. Guidelines need to be developed on conditions under

which the client-server should be considered and how it should be implemented. The guide-

83

lines should include the issue of migration from a mainframe-based legacy system to local

area network based computing with open server, workstation, and communication proto-

cols.

GUI-based front end.The GUI has become the standard interface for today’s user.

The issue of transforming the character-based user interface inherent to many legacy sys-

tems to the GUI must be addressed. In many legacy systems, multiple types of user inter-

faces exist based on the terminal types. Techniques need to be developed and guidelines

must be prepared to map these terminal-oriented user interfaces to a single GUI.

Multiple terminals. Many legacy applications are tightly coupled to terminal hard-

ware and proprietary communications software. Guidelines must be developed to help

implementors create virtual terminals based on open communications protocols and soft-

ware so that they can be directly mapped to today’s GUI but still retain the look and feel of

the user interface of the legacy system when warranted.

Database bindings. OO program bindings to relational DBMSs are still evolving

and developers will need more standards-based technology support in this area. Technology

must be developed so that one can capture the database of the legacy system and transition

it to the new relational DBMS technology. The developers will also require guidelines and

examples on how to interface their specific relational DBMSs to Ada programs which may

or may not be supported by the vendors.

Data structure and conversion. Ada’s arithmetic facility does not readily handle the

exact decimal model needed for financial computations, leaving an impediment to a suc-

cessful transition to Ada for information systems applications. The Ada Decimal Arith-

metic and Representatives (ADAR) project addresses this shortcoming by providing a set

of packages that define and implement decimal support in Ada 83. Today, most of the ven-

dors do not support ADAR packages, and guidelines must be developed on the implemen-

tation and usage of financial data in Ada.

Interoperability. Issues related to interoperability between old, conventional sys-

tems and new, object-oriented systems need to be addressed for DoD. Is the Object Man-

agement Group’s Object Request Broker, for example, a viable solution to the problem of

interoperability?

Real-time legacy system. The use of OO technology for real-time system is not

addressed in this report nor is the wrapping strategy for such systems. Further work needs

84

to be done that identifies the unique issues related to real-time system and how to resolve

some of them. This is still an open research area.

A-1

 APPENDIX A.
EXAMPLES OF OO PROGRAMMING CODE

A.1 LEGACY COBOL PROGRAM

A.1.1 COBOL Listing

IDENTIFICATION DIVISION.

PROGRAM-ID. TAX-CALCULATION.

AUTHOR. UNKNOWN.

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SOURCE-COMPUTER. VAX.

OBJECT-COMPUTER. VAX.

INPUT-OUTPUT SECTION.

FILE-CONTROL.

SELECT EMPLOYEE-FILE ASSIGN TO “TESTP.DAT”.

SELECT DEPT-DIVISION-LIST ASSIGN TO PRINTER.

DATA DIVISION.

FILE SECTION.

FD EMPLOYEE-FILE

LABEL RECORDS ARE STANDARD

DATA RECORD IS INPUT-RECORD.

01 INPUT-RECORD.

02 IR-NAME PIC X(25).

02 IR-ADDRESS PIC X(30).

02 IR-NUMBER PIC 9(9).

02 IR-DIVISION PIC X.

02 IR-DEPARTMENT PIC X(2).

02 IR-SALARY PIC 9(6).

02 FILLER PIC X(2).

A-2

02 IR-DEPENDENT PIC 99.

02 FILLER PIC X.

02 IR-STATUS PIC X.

02 FILLER PIC X.

FD DEPT-DIVISION-LIST

LABEL RECORDS ARE OMITTED

DATA RECORD IS PRINT-LINE.

01 PRINT-LINE PIC X(132).

WORKING-STORAGE SECTION.

01 CONSTANTS.

02 LINES-PER-PAGE PIC 99 VALUE 46.

01 COUNTERS.

03 PAGE-CNT PIC 999 VALUE ZERO.

03 LINE-CNT PIC 99 VALUE 46.

88 PAGE-FULL VALUE 46 THROUGH 99.

01 ACCUMUL-TOTALS.

03 NUMBER-OF-EMPLOYEES PIC 9(3) VALUE ZERO.

03 SALARY-TOTAL PIC 9(8) VALUE ZERO.

03 DEPT-NUMBER-OF-EMP PIC 99 VALUE ZERO.

03 DEPT-TOTAL-SALARY PIC 9(8) VALUE ZERO.

03 DEPT-TOTAL-TAX PIC 9(8) VALUE ZERO.

03 DIVISION-NUMBER-OF-EMP PIC 9(4) VALUE ZERO.

03 DIVISION-TOTAL-SALARY PIC 9(8) VALUE ZERO.

01 HOLD-FILEDS.

03 HOLD-DEPARTMENT PIC X(2) VALUE SPACES.

03 HOLD-DIVISION PIC X VALUE SPACES.

03 HOLD-STATUS PIC X VALUE SPACES.

01 TAX-FIELDS.

03 HOLD-FED-TAX PIC 9(5)V99 VALUE ZERO.

03 HOLD-STATE-TAX PIC 9(5)V99 VALUE ZERO.

03 TOTAL-FED-TAX PIC 9(8)V99 VALUE ZERO.

03 HOLD-TOTAL-TAX PIC 9(8)V99 VALUE ZERO.

A-3

03 TOTAL-STATE-TAX PIC 9(8)V99 VALUE ZERO.

03 HOLD-DEPENDENT PIC 99 VALUE ZERO.

03 NET-SALARY PIC 9(8)V99 VALUE ZERO.

03 FED-TAX-RATE-1 PIC 9V99 VALUE 0.15.

03 FED-TAX-RATE-2 PIC 9V99 VALUE 0.28.

03 FED-TAX-RATE-3 PIC 9V99 VALUE 0.31.

03 STATE-TAX-RATE PIC 9V99 VALUE 0.05.

01 END-OF-FLAG PIC X(3) VALUE “NO”.

88 END-OF-FILE VALUE “YES”.

01 MAJOR-HEADING.

02 FILLER PIC X(44) VALUE SPACES.

02 FILLER PIC X(3) VALUE “ABC”.

02 FILLER PIC X VALUE SPACES.

02 FILLER PIC X(7) VALUE “COMPANY”.

02 FILLER PIC X VALUE SPACES.

02 FILLER PIC X(19) VALUE

“DIVISION/DEPARTMENT”.

02 FILLER PIC X VALUE SPACES.

02 FILLER PIC X(8) VALUE “EMPLOYEE”.

02 FILLER PIC X VALUE SPACES.

02 FILLER PIC X(6) VALUE “REPORT”.

02 FILLER PIC X(10) VALUE SPACES.

02 FILLER PIC X(5) VALUE “PAGE “.

02 MH-PAGE-COUNTER PIC ZZZ.

01 SUBHEADING.

02 FILLER PIC X(25) VALUE “ EMPLOYEE NAME “.

02 FILLER PIC X(8) VALUE SPACES.

02 FILLER PIC X(15) VALUE “EMP NUMBER”.

02 FILLER PIC X(2) VALUE SPACES.

02 FILLER PIC X(6) VALUE “STATUS”.

02 FILLER PIC X(2) VALUE SPACES.

02 FILLER PIC X(10) VALUE “DEPARTMENT”.

02 FILLER PIC X(3) VALUE SPACES.

02 FILLER PIC X(5) VALUE “ DEP “.

A-4

02 FILLER PIC X(8) VALUE SPACES.

02 FILLER PIC X(11) VALUE “ SALARY “.

02 FILLER PIC X(8) VALUE SPACES.

02 FILLER PIC X(7) VALUE “TOT-TAX”.

01 DETAIL-LINE.

02 DL-NAME PIC X(25).

02 FILLER PIC X(8) VALUE SPACES.

02 DL-EMPLOYEE-NUMBER PIC X(9).

02 FILLER PIC X(9) VALUE SPACES.

02 DL-STATUS PIC X.

02 FILLER PIC X(7) VALUE SPACES.

02 FILLER PIC X(6) VALUE SPACES.

02 DL-DEPARTMENT PIC X(2).

02 FILLER PIC X(5) VALUE SPACES.

02 DL-DEPENDENT PIC Z9.

02 FILLER PIC X(12) VALUE SPACES.

02 DL-SALARY PIC $ZZZ,ZZZ.99.

02 FILLER PIC X(8) VALUE SPACES.

02 DL-TAX PIC $ZZZ,ZZZ.99.

01 DEPARTMENT-TOTAL-LINE.

02 FILLER PIC X(35) VALUE SPACES.

02 DTL-NO-EMP PIC Z9.

02 FILLER PIC X(5) VALUE SPACES.

02 FILLER PIC X(9) VALUE “EMPLOYEES”.

02 FILLER PIC X(27) VALUE SPACES.

02 DTL-TOTAL-SALARY PIC $**,***,***.99.

02 FILLER PIC X(8) VALUE SPACES.

02 DTL-TAX PIC $***,***.99.

01 DIVISION-TOTAL-LINE.

02 FILLER PIC X(35) VALUE

“ ****** DIVISION TOTAL ******”.

02 FILLER PIC X(10) VALUE SPACES.

02 DVT-NUMBER-OF-EMP PIC Z9.

02 FILLER PIC X(5) VALUE SPACES.

A-5

02 FILLER PIC X(9) VALUE “EMPLOYEES”.

02 FILLER PIC X(7) VALUE SPACES.

02 DVT-TOTAL-SALARY PIC $**,***,***.

01 SUMMARY-LINE.

02 FILLER PIC X(15) VALUE SPACES.

02 FILLER PIC X(20) VALUE

“COMPANY TOTAL *****”.

02 SL-NO-OF-EMPLOYEES PIC ZZZ9.

02 FILLER PIC X(5) VALUE SPACES.

02 FILLER PIC X(9) VALUE “EMPLOYEES”.

02 FILLER PIC X(37) VALUE SPACES.

02 SL-SALARY-TOTAL PIC $**,***,***.99.

PROCEDURE DIVISION.

001-START-SECTION.

PERFORM A200-INITIALIZATION.

PERFORM A300-CONTROL

UNTIL END-OF-FILE.

PERFORM A900-TERMINATION.

STOP RUN.

A200-INITIALIZATION.

OPEN INPUT EMPLOYEE-FILE

OUTPUT DEPT-DIVISION-LIST.

PERFORM A400-READ.

MOVE IR-DEPARTMENT TO HOLD-DEPARTMENT

MOVE IR-DIVISION TO HOLD-DIVISION.

A300-CONTROL.

IF IR-DIVISION NOT = HOLD-DIVISION

PERFORM A600-DEPARTMENT-BREAK

PERFORM A650-DIVISION-BREAK

ELSE

IF IR-DEPARTMENT NOT = HOLD-DEPARTMENT

PERFORM A600-DEPARTMENT-BREAK.

A-6

PERFORM A500-PROCESS.

PERFORM A400-READ.

A400-READ.

READ EMPLOYEE-FILE

AT END MOVE “YES” TO END-OF-FLAG.

A500-PROCESS.

MOVEIR-NAME TO DL-NAME.

MOVE IR-NUMBER TO DL-EMPLOYEE-NUMBER.

MOVE IR-SALARY TO DL-SALARY.

MOVE IR-STATUS TO DL-STATUS.

MOVE IR-DEPENDENT TO DL-DEPENDENT.

MOVE IR-DEPARTMENT TO DL-DEPARTMENT.

MOVE IR-STATUS TO HOLD-STATUS.

MOVE IR-DEPENDENT TO HOLD-DEPENDENT.

ADD IR-SALARY TO DEPT-TOTAL-SALARY.

ADD IR-SALARY TO DIVISION-TOTAL-SALARY.

IF HOLD-STATUS NOT = “C”

THEN

PERFORM A550-TAX-CALCULATION

MOVE HOLD-TOTAL-TAX TO DL-TAX

ADD HOLD-TOTAL-TAX TO DEPT-TOTAL-TAX

ELSE

 MOVE ZERO TO DL-TAX.

ADD 1 TO DEPT-NUMBER-OF-EMP.

ADD 1 TO DIVISION-NUMBER-OF-EMP.

ADD IR-SALARY TO SALARY-TOTAL.

ADD 1 TO NUMBER-OF-EMPLOYEES.

IF PAGE-FULL

PERFORM A700-WRITE-HEADINGS.

WRITE PRINT-LINE FROM DETAIL-LINE AFTER 2.

A-7

ADD 2 TO LINE-CNT.

A550-TAX-CALCULATION.

IF IR-SALARY <= 20000

 THEN

 COMPUTE NET-SALARY = IR-SALARY - (2500 * HOLD-DEPENDENT)

 COMPUTE HOLD-FED-TAX = FED-TAX-RATE-1 * NET-SALARY

ELSE

IF IR-SALARY > 20000 AND <= 40000

 COMPUTE NET-SALARY = IR-SALARY - (2500 * HOLD-DEPENDENT)

 COMPUTE HOLD-FED-TAX = FED-TAX-RATE-2 * NET-SALARY

ELSE

 COMPUTE NET-SALARY = IR-SALARY - 2500 * HOLD-DEPENDENT

 COMPUTE HOLD-FED-TAX = FED-TAX-RATE-3 * NET-SALARY.

 COMPUTE HOLD-STATE-TAX = STATE-TAX-RATE * IR-SALARY.

 COMPUTE HOLD-TOTAL-TAX = HOLD-FED-TAX + HOLD-STATE-TAX.

A600-DEPARTMENT-BREAK.

MOVE DEPT-NUMBER-OF-EMP TO DTL-NO-EMP.

MOVE DEPT-TOTAL-SALARY TO DTL-TOTAL-SALARY.

MOVE HOLD-TOTAL-TAX TO DTL-TAX.

IF PAGE-FULL

 PERFORM A700-WRITE-HEADINGS.

WRITE PRINT-LINE FROM DEPARTMENT-TOTAL-LINE AFTER 2.

ADD 2 TO LINE-CNT.

MOVE 0 TO DEPT-NUMBER-OF-EMP.

MOVE 0 TO DEPT-TOTAL-SALARY.

MOVE IR-DEPARTMENT TO HOLD-DEPARTMENT.

A650-DIVISION-BREAK.

MOVE DIVISION-TOTAL-SALARY TO DVT-TOTAL-SALARY.

MOVE DIVISION-NUMBER-OF-EMP TO DVT-NUMBER-OF-EMP.

IF PAGE-FULL

PERFORM A700-WRITE-HEADINGS.

WRITE PRINT-LINE FROM DIVISION-TOTAL-LINE AFTER 3.

A-8

MOVE 0 TO DVT-NUMBER-OF-EMP.

MOVE 0 TO DIVISION-TOTAL-SALARY.

MOVE IR-DIVISION TO HOLD-DIVISION.

A700-WRITE-HEADINGS.

ADD 1 TO PAGE-CNT.

MOVE PAGE-CNT TO MH-PAGE-COUNTER.

WRITE PRINT-LINE FROM SUBHEADING AFTER 2.

MOVE 3 TO LINE-CNT.

A800-WRITE-SUMMARY-LINE.

MOVE NUMBER-OF-EMPLOYEES TO SL-NO-OF-EMPLOYEES.

MOVE SALARY-TOTAL TO SL-SALARY-TOTAL.

WRITE PRINT-LINE FROM SUMMARY-LINE AFTER 3.

A900-TERMINATION.

PERFORM A600-DEPARTMENT-BREAK.

PERFORM A650-DIVISION-BREAK.

PERFORM A800-WRITE-SUMMARY-LINE.

CLOSE EMPLOYEE-FILE

DEPT-DIVISION-LIST.

A.1.2 Employee Data File

JONES BRIAN 6463 FRENCHMENS DRIVE,ALEX,VA, 156780225 1 CS 123456 01 F

SMITH DOUG 1234 ANY WHERE ,MCLN,VA, 123450999 1 CS009999 02 C

JOHN DOE 9999 MY STREET ,WHTH,VA,999999998 2 ST019899 03 H

JANE DOE 7777 GOOD STREET ,NATICK,MA,777000555 3 SE567890 02 F

A.1.3 Tax Report Listing

EMPLOYEE NAME EMP NUMBER STATUS DEPARTMENT DEP SALARY TOT-TAX

JONES BRIAN 156780225 F CS 1 $123,456.00 $ 43,669.16

SMITH DOUG 123450999 C CS 2 $ 9,999.00 $.00

2 EMPLOYEES $***133,455.00 $*43,669.16

****** DIVISION TOTAL ****** 2 EMPLOYEES $***133,455

JOHN DOE 999999998 H ST 3 $ 19,899.00 $ 2,854.80

1 EMPLOYEES $****19,899.00 $**2,854.80

 ****** DIVISION TOTAL ****** 3 EMPLOYEES $****19,899

JANE DOE 777000555 F SE 2 $567,890.00 $102,890.40

A-9

1 EMPLOYEES $***567,890.00 $102,890.40

 ****** DIVISION TOTAL ****** 4 EMPLOYEES $***567,890

 COMPANY TOTAL ***** 4 EMPLOYEES$***721,244.00

A.2 ADA PACKAGE SPECIFICATIONS

A.2.1 ss_s.ada

-- Abstraction

package Social_Securityis

type Numberis private;

 Default_Separator :constant Character := ‘ ‘;

 Invalid_Number :exception;
function Construct (Part1 :in Natural;

 Part2 :in Natural;
 Part3 :in Natural)return Number;

function Image (Self :in Number;
 Separator :in Character := Default_Separator)

return String;

private
type Numberis new String(1..11);

end Social_Security;

A.2.2 employee_s.ada

with Social_Security;
with ADAR_Comp;
--=======
-- Class:
--=======
package Employeeis
type Classis private;
--============

 -- Attributes:
 --============
type Name is new String (1..25);
type Number is new Social_Security.Number;
type Departmentis (Unknown,

 Computer_Science,
 Science_and_Technology,
 Systems_Evaluation);
type Status is (Salaried, Hourly, Consultant);

A-10

type Money is new ADAR_Comp.Decimal (Precision => 9, Scale => 2);
 --===================
 -- Object Management:
 --===================
 -- Without a Constructor, this type cannot be used. Look at subclasses
 -- to see how to construct objects. In Ada 95, Class can be an
 -- abstract type!
 -- ============================
 -- Attribute access operations:
 -- ============================
procedure Change (Self :in Class;

 Emp_Name :in Name;
 SS_Number :in Number);
 -- Overloading is a form of (ad-hoc) polymorphism:
procedure Change (Self :in Class; D :in Department);
procedure Change (Self :in Class; Salary :in Money);

function Emp_Name (Self :in Class)return Name;
function SS_Number (Self :in Class)return Number;
function Emp_Status (Self :in Class)return Status;
function Emp_Department (Self :in Class)return Department;
function Emp_Salary (Self :in Class)return Money;

 --============
 -- Operations:
 --============
package Abstractis
function Net_Pay (Self :in Class)return Money;
function Send_Check_To (Self :in Class)return String;

end Abstract;

--
-- For Child packages only (see Ada 95):
-- Start private section here when migrating to Ada 95!

 -- Status is used as the tag to simulate polymorphism.
type Tagis new Status;
type Structure (Tagged : Tag)is private;

private
 -- The discriminant, Tagged, is used to simulate runtime polymorphism.
 -- This should be replaced in Ada 9X with the corresponding tagged record
 -- declaration.
type Structure (Tagged : Tag)is
record

 Emp_Name : Name;
 SS_Number : Number;
 Emp_Department : Department;
 Emp_Salary : Money;

A-11

end record;

type Classis access Structure;

end Employee;

A.2.3 employee_consulting_s.ada

with Employee;

--=========
-- Subclass
--=========
package Employee_Consultingis
type Classis new Employee.Class; -- Inheritance

 --==================
 -- Object Management
 --==================
procedure Initialize (Object :in out Class);

 --================================
 -- New attribute access operations
 --================================
procedure Set_Mail_Address (Self :in Class; MA :in String);
function Mail_Address (Self :in Class)return String;

 --===============
 -- New operations
 --===============
 -- The Dispatching methods declared in the parent class must
 -- be defined for each subclass and the dispatching method itself
 -- updated to invoke the correct subclass method.
function Net_Pay (Self :in Class)return Employee.Money;
function Send_Check_To (Self :in Class)return String;

-- For dispatching only. See implementation of Parent Class. Remove
-- in Ada 95.
 Unique_Tag :constant Employee.Tag := Employee.Consultant;

private
 -- A quick and dirty way to deal with unconstrained attributes:
type Mailing_Addressis access String;

 -- The subclass structure must keep the parent structure intact
 -- while appending additional data. This implementation works for
 -- most compilers:
type Structureis

A-12

record
 Parent : Employee.Structure(Unique_Tag);
 MA : Mailing_Address;

end record;
end Employee_Consulting;

A.2.4 employee_taxable_s.ada

with Employee;

--=========
-- Subclass
--=========
-- This package combines two subclasses, something Ada can do more
-- conveniently than other languages:
package Employee_Taxableis
type Classis new Employee.Class;

 --============
 -- Attributes:
 --============
 -- Tax uses the already defined Employee.Money type.
type Deductionis range 0..12;

 --===================
 -- Object management:
 --===================
procedure Initialize_Hourly (Object :in out Class);
procedure Initialize_Salaried (Object :in out Class);

 --==========================
 -- New attribute operations:
 --==========================
procedure Change (Self :in Class; Tax :in Employee.Money);
procedure Change (Self :in Class; D :in Deduction);

function Tax (Self :in Class)return Employee.Money;
function Deductions (Self :in Class)return Deduction;

 --================
 -- New operations:
 --================
function Net_Pay (Self :in Class)return Employee.Money;
function Send_Check_To (Self :in Class)return String;

 Unique_Hourly_Tag :constant Employee.Tag := Employee.Hourly;
 Unique_Salaried_Tag :constant Employee.Tag := Employee.Salaried;

A-13

private
 -- The two different structures are identical except for the tag:
type Structure_Hourlyis -- new Employee.Structurewith
record

 Parent : Employee.Structure(Unique_Hourly_Tag);
 Tax : Employee.Money;
 D : Deduction;

end record;
type Structure_Salariedis -- new Employee.Structurewith
record

 Parent : Employee.Structure(Unique_Salaried_Tag);
 Tax : Employee.Money;
 D : Deduction;

end record;
end Employee_Taxable;

A.2.5 employee_file_s.ada

with Employee;-- An associated class

--======
-- Class
--======
package Employee_Fileis
type Classis limited private ;

 --===================
 -- Object management:
 --===================
 -- The Open procedure provides the constructor method:
 Unable_to_Open_File :exception;
procedure Open (Self :in out Class;

 Path_Name :in String);

 -- The Close procedure provides the destructor method:
procedure Close (Self :in out Class);

 --============
 -- Operations:
 --============
 Unable_to_Read_File :exception;
 Attempt_to_Read_Past_EOF :exception;
function Get_Next (Self :in Class)return Employee.Class;

function End_of_File (Self :in Class)return Boolean;

private
 -- When Structure is not visible, cannot inherit from this class. A tag

A-14

 -- is not needed, either.
type Structure;

type Classis access Structure;
end Employee_File;

A.2.6 check_s.ada

with Employee;-- an associated class
with Calendar;-- used for the date attribute

--======
-- Class
--======
package Checkis
type Classis private;

 --===================
 -- Object management:
 --===================
 -- This class has an association with Employee.Class which is
 -- implemented one way.
function Construct (Pays :in Employee.Class;

 Number :in Natural;
 Date :in Calendar.Time := Calendar.Clock)

return Class;

 --===========
 -- Operations
 --===========
procedure Print (Self :in Class);

private
type Structureis
record

 Pays : Employee.Class;
 Number : Natural;
 Date : Calendar.Time;

end record;

type Classis access Structure;

end Check;

A.2.7 payroll.ada

with Employee_File;

A-15

with Check;
with Tax_Calculation;

with Text_IO;-- For User Interface

--======
-- Class
--======
-- This is a control class, most easily implemented as a procedure,
-- although a package could be used in preparation for a more
-- sophisticated user interface (such as X-windows callbacks).
procedure Payrollis
 -- There is only one payroll, therefore a type definition is not needed.

 --===========
 -- Attributes
 --===========
 DB : Employee_File.Class;
 Check_Number : Natural;
 Report_File_Name :constant String := “PRINTER.DAT”;

 -- User-Interface
 Input_Buffer : String (1..80);
 Input_Length : Natural;

 --===========
 -- Operations
 --===========
begin
 Generate_Report:

begin
 Tax_Calculation;

end Generate_Report;

 Set_File_Name:
begin

 Employee_File.Open (DB, Report_File_Name);
end Set_File_Name;

 Set_Starting_Check_Number:
begin

 Text_IO.Put_Line (“Enter starting check number:”);
 Text_IO.Get_Line (Input_Buffer, Input_Length);
 Check_Number := Natural’Value (Input_Buffer (1..Input_Length));

end Set_Starting_Check_Number;

 Print_Payroll:
begin

A-16

while not Employee_File.End_of_File (DB)loop
begin

 Check.Print (Check.Construct (Employee_File.Get_Next (DB),
 Check_Number));
 Check_Number := Check_Number + 1;

exception
when Employee_File.Attempt_to_Read_Past_EOF =>
exit;

when others =>
null ;

end;
end loop;

 Employee_File.Close (DB);
end Print_Payroll;

end Payroll;

A.3 ADA PACKAGE BODIES

A.3.1 ss_b.ada

package body Social_Securityis

Operation definitions

function Fixed_Image (N :in Natural;

 Length :in Natural)return Stringis
 Result : String(1..Length) := String’(1..Length => ‘0’);
 Image :constant String := Natural’Image(N);
 L :constant Natural := Image’Length;
begin

 Result(2+Length-L..Length) := Image(Image’First+1..Image’Last);
return Result;

end Fixed_Image;

function Construct (Part1 :in Natural;

 Part2 :in Natural;
 Part3 :in Natural)return Numberis
begin
if Part1in 0..999 and

 Part2in 0..99 and
 Part3in 0..9999then

return Number (Fixed_Image (Part1,3) & ‘-’ &
 Fixed_Image (Part2,2) & ‘-’ &
 Fixed_Image (Part3,4)
);

else
raise Invalid_Number;

A-17

end if;
end Construct;

function Image (Self :in Number;

 Separator :in Character := Default_Separator)
return Stringis

begin
if Separator = Default_Separatorthen
return String(Self);

else

 Convert_Delimeter:
declare

 Str : String(1..Self’Length) := String(Self);
begin

 Str(4) := Separator;
 Str(7) := Separator;

return Str;
end Convert_Delimeter;

end if;
end Image;

end Social_Security;

A.3.2 employee_b.ada

package body Employeeis

Operation definitions

procedure Change (Self :in Class;

 Emp_Name :in Name;
 SS_Number :in Number)is
begin

 Self.Emp_Name := Emp_Name;
 Self.SS_Number := SS_Number;
end;

procedure Change (Self :in Class; D :in Department)is
begin

 Self.Emp_Department := D;
end;

procedure Change (Self :in Class; Salary :in Money)is
begin

 Self.Emp_Salary := Salary;
end;

A-18

function Emp_Name (Self :in Class)return Nameis
begin
return Self.Emp_Name;

end;

function SS_Number (Self :in Class)return Numberis
begin
return Self.SS_Number;

end;

function Emp_Status (Self :in Class)return Statusis
begin
return Status(Self.Tagged);

end;

function Emp_Department (Self :in Class)return Departmentis
begin
return Self.Emp_Department;

end;

function Emp_Salary (Self :in Class)return Moneyis
begin
return Self.Emp_Salary;

end;
 -- Dispatching operations can be separate to make updates easier
 -- and to localize the context clauses to the operations that use them.
package body Abstractis separate;

end Employee;

A.3.3 employee_consulting_b.ada

with Unchecked_Conversion;-- For simulating inheritance
with Ada; -- .Tags

package body Employee_Consultingis
 --========================
 -- Subclass Implementation
 --========================
 Data type definition

type Child_Pointeris access Structure;-- of the Child.

 Operation definitions

function Narrow (Parent_Pointer :in Class)return Child_Pointeris

function Convert_Pointeris

A-19

new Unchecked_Conversion (Source => Class,
 Target => Child_Pointer);

 Result :constant Child_Pointer
 := Convert_Pointer (Parent_Pointer);

use Employee;
begin
if Result.Parent.Tagged = Unique_Tagthen -- of this Child
return Result;

else
raise Ada.Tags.Tag_Error;

end if;
end Narrow;

procedure Initialize (Object :in out Class)is
function Convert_Pointeris
new Unchecked_Conversion (Child_Pointer, Class);

begin
 Object := Convert_Pointer (new Structure);-- of the Child
end;

function Mail_Address (Self :in Class)return Stringis

 P :constant Child_Pointer := Narrow(Self);
begin
if P.MA = null then return “Hold”;
else return P.MA.all;
end if;

end;

procedure Set_Mail_Address (Self :in Class; MA :in String)is
begin

 Narrow(Self).MA :=new String’(MA);
end;

function Net_Pay (Self :in Class)return Employee.Moneyis
begin
return Emp_Salary(Self);

end;

function Send_Check_To (Self :in Class)return Stringis
begin
return Mail_Address(Self);

end;

end Employee_Consulting;

A-20

A.3.4 employee_taxable_b.ada

with Unchecked_Conversion;-- For simulating inheritance
with Ada; --.Tags

package body Employee_Taxableis
 --========================
 -- Subclass Implementation
 --========================
 Data type definitions

type Pointer_His access Structure_Hourly;
type Pointer_Sis access Structure_Salaried;

Operation definitions

 -- Narrow arbitrarily uses Pointer_H, it could use Pointer_S:
function Narrow (Parent_Pointer :in Class)return Pointer_His
function Convert_Pointeris
new Unchecked_Conversion (Source => Class,

 Target => Pointer_H);
 Result :constant Pointer_H := Convert_Pointer(Parent_Pointer);

use Employee;-- for “=” operator
begin
if Result.Parent.Tagged = Hourlyor

 Result.Parent.Tagged = Salariedthen
return Result;

else
raise Ada.Tags.Tag_Error;

end if;
end Narrow;

procedure Initialize_Hourly (Object :in out Class)is

function Convert_Pointeris
new Unchecked_Conversion (Pointer_H, Class);

begin
 Object := Convert_Pointer (new Structure_Hourly);
end;

procedure Initialize_Salaried (Object :in out Class)is

function Convert_Pointeris
new Unchecked_Conversion (Pointer_S, Class);

begin
 Object := Convert_Pointer (new Structure_Salaried);
end;

A-21

procedure Change (Self :in Class; Tax :in Employee.Money)is
begin

 Narrow(Self).Tax := Tax;
end;

procedure Change (Self :in Class; D :in Deduction)is
begin

 Narrow(Self).D := D;
end;

function Tax (Self :in Class)return Employee.Moneyis
begin
return Narrow(Self).Tax;

end Tax;

function Deductions (Self :in Class)return Deductionis
begin
return Narrow(Self).D;

end Deductions;

function Net_Pay (Self :in Class)return Employee.Moneyis

 Result : Employee.Money := Emp_Salary(Self);
use Employee;

begin
 Decrement (Result, Tax(Self), Rounded => True);

return Result;
end;

function Send_Check_To (Self :in Class)return Stringis
begin
return Employee.Department’Image (Emp_Department(Self));

end;

end Employee_Taxable;

A.3.5 empolyee_abstract.ada

with Employee_Taxable;
with Employee_Consulting;

separate (Employee)
package body Abstractis

 Operation definitions

function Net_Pay (Self :in Class)return Moneyis
begin -- Dispatching
case Self.Taggedis

A-22

when Hourly | Salaried =>
return Employee_Taxable.Net_Pay

 (Employee_Taxable.Class (Self));

when Consultant =>
return Employee_Consulting.Net_Pay

 (Employee_Consulting.Class(Self));
 -- Add additional children here
 -- No others clause! Thisis an abstract operation!

end case;
end;

function Send_Check_To (Self :in Class)return Stringis
begin
case Self.Taggedis
when Hourly | Salaried =>
return Employee_Taxable.Send_Check_To

 (Employee_Taxable.Class (Self));

when Consultant =>
return Employee_Consulting.Send_Check_To

 (Employee_Consulting.Class(Self));

 -- Add additional children here
 -- No others clause! This is an abstract operation!

end case;
end;

end Abstract;

A.3.6 employee_file_b.ada

with Employee_Taxable;
with Employee_Consulting;

with ADAR_Comp;
with Sequential_IO;

-- Most of this file involves parsing an ASCII text file.
package body Employee_Fileis

-- COBOL specification of data file format:
--01 DETAIL-LINE.
-- 02 DL-NAME PIC X(25).
-- 02 FILLER PIC X(8) VALUE SPACES.
-- 02 DL-EMPLOYEE-NUMBER PIC X(9).
-- 02 FILLER PIC X(9) VALUE SPACES.
-- 02 DL-STATUS PIC X.

A-23

-- 02 FILLER PIC X(7) VALUE SPACES.
-- 02 FILLER PIC X(6) VALUE SPACES.
-- 02 DL-DEPARTMENT PIC X(2).
-- 02 FILLER PIC X(5) VALUE SPACES.
-- 02 DL-DEPENDENT PIC Z9.
-- 02 FILLER PIC X(12) VALUE SPACES.
-- 02 DL-SALARY PIC $ZZZ,ZZZ.99.
-- 02 FILLER PIC X(8) VALUE SPACES.
-- 02 DL-TAX PIC $ZZZ,ZZZ.99.

 Data type definitions

type Detail_Lineis
record

 Emp_Name : String (1..25);
 Filler_1 : String (1..8);
 Emp_Number : String (1..9);
 Filler_2 : String (1..9);
 Emp_Status : Character;
 Filler_3 : String (1..13);
 Emp_Department : String (1..2);
 Filler_4 : String (1..5);
 Emp_Deductions : String (1..2);
 Filler_5 : String (1..12);
 Emp_Salary : String (1..11);
 Filler_6 : String (1..8);
 Tax : String (1..11);
 Filler_7 : String (1..16);

end record;

type Status_Conversionis array (Character)of Employee.Status;
 Convert_Status :constant Status_Conversion
 := Status_Conversion’(‘s’ | ‘S’ |’f’ | ‘F’ => Employee.Salaried,
 ‘h’ | ‘H’ => Employee.Hourly,
 ‘c’ | ‘C’ => Employee.Consultant,

others => Employee.Hourly);

type Department_Codeis (CS,ST,SE);
type Conversionis array (Department_Code)of Employee.Department;

 Department_Convert :constant Conversion
 := (CS => Employee.Computer_Science,
 ST => Employee.Science_and_Technology,
 SE => Employee.Systems_Evaluation);

package File_Operationsis
new Sequential_IO (Detail_Line);

type Structureis

A-24

record
 File : File_Operations.File_Type;

end record;

 Operation definitions

procedure Open (Self :in out Class;

 Path_Name :in String)is
begin
if Self =null then Self :=new Structure;
elsif File_Operations.Is_Open (Self.File)then

 File_Operations.Close (Self.File);
end if;

 File_Operations.Open (File => Self.File,
 Mode => File_Operations.In_File,
 Name => Path_Name);
exception
when others =>
raise Unable_to_Open_File;

end Open;

procedure Close (Self :in out Class)is
begin
if Self /=null then

 File_Operations.Close (Self.File);
 -- Deallocate Self -- TBD

end if;
end Close;

function Salary_Value (S :in String)return Employee.Moneyis

 Parse_S : String(1..S’Length) := S;
 Result : Employee.Money;
begin

 Zero_Leading:
for I in Parse_S’Rangeloop
case Parse_S(I)is
when ‘$’ | ‘*’ | ‘ ‘ => Parse_S(I) := ‘0’;
when ‘,’ => Parse_S(2..I) := Parse_S(1..I-1);

 Parse_S(1) := ‘ ‘;
when others =>null ;

end case;
end loop Zero_Leading;

 Employee.Move (Parse_S, Result);
return Result;

end Salary_Value;

A-25

function Construct (Tag :in Employee.Status;
 Name :in Employee.Name;
 SS :in Employee.Number)

return Employee.Classis
 Result : Employee.Class;

use Employee;
begin
case Tagis
when Consultant => Employee_Consulting.Initialize

 (Employee_Consulting.Class(Result));
when Salaried => Employee_Taxable.Initialize_Hourly

 (Employee_Taxable.Class(Result));
when Hourly => Employee_Taxable.Initialize_Salaried

 (Employee_Taxable.Class(Result));
end case;

 Employee.Change (Result, Name, SS);

return Result;

end;

function Get_Next (Self :in Class)return Employee.Classis

 Data_Record : Detail_Line;
begin
if File_Operations.End_of_File (Self.File)then
raise Attempt_to_Read_Past_EOF;

end if;

 File_Operations.Read (Self.File, Data_Record);

 Parse_Data_Record:
declare

 Result :constant Employee.Class := Construct (
 Tag => Convert_Status(Data_Record.Emp_Status),
 Name => Employee.Name(Data_Record.Emp_Name),
 SS => Employee.Construct (
 Part1 => Natural’Value (Data_Record.Emp_Number(1..3)),
 Part2 => Natural’Value (Data_Record.Emp_Number(4..5)),
 Part3 => Natural’Value (Data_Record.Emp_Number(6..9))));

begin
 Employee.Change (Result, Salary_Value(Data_Record.Emp_Salary));

 Determine_Department:
declare

 D : Department_Code;
begin

 D := Department_Code’Value (Data_Record.Emp_Department);
 Employee.Change (Result, Department_Convert (D));

A-26

exception
when others => Employee.Change (Result, Employee.Unknown);

end Determine_Department;

case Employee.Emp_Status(Result)is
when Employee.Salaried | Employee.Hourly =>

 Employee_Taxable.Change (Self => Employee_Taxable.Class(Result),
 Tax => Salary_Value (Data_Record.Tax));
 Employee_Taxable.Change (Employee_Taxable.Class(Result),
 Employee_Taxable.Deduction’Value(Data_Record.Emp_Deductions));

when others =>
null ;

end case;

return Result;
end Parse_Data_Record;

exception
when others =>
raise Unable_to_Read_File;

end Get_Next;

function End_of_File (Self :in Class)return Booleanis
begin
return Self =null or else

not File_Operations.Is_Open (Self.File)or else
 File_Operations.End_Of_File (Self.File);
end End_of_File;

end Employee_File;

A.3.7 check_b.ada

with Text_IO; -- To print the check
with ADAR_Comp;-- Format money

package body Checkis

 Operation definitions

function Construct (Pays :in Employee.Class;

 Number :in Natural;
 Date :in Calendar.Time := Calendar.Clock)

return Classis
 Result : Class :=new Structure;
begin

 Result.Pays := Pays;
 Result.Number := Number;

A-27

 Result.Date := Date;

return Result;
end Construct;

function Date_Image (Date : Calendar.Time)return Stringis
use Calendar;

begin
return Month_Number’Image(Month(Date)) & ‘/’ &

 Day_Number’Image (Day (Date)) & ‘/’ &
 Year_Number’Image (Year (Date));
end;

procedure Print (Self :in Class)is
begin

 Text_IO.New_Line;
 Text_IO.Put_Line(Integer’Image(Self.Number) &
 String’(1..10 => ‘ ‘) & Date_Image(Self.Date));
 Text_IO.New_Line;

 Text_IO.Put_Line (String(Employee.Emp_Name(Self.Pays)) &
 String’(1..5 => ‘ ‘) &
 ‘$’ & Employee.Image(Employee.Abstract.Net_Pay(Self.Pays)));

 Text_IO.New_Line;
 Text_IO.Put_Line (“Send Check to:” &
 Employee.Abstract.Send_Check_To(Self.Pays));
 Text_IO.New_Line;
end;

end Check;

References - 1

LIST OF REFERENCES

[ANSI95] American National Standards Institute, ANSI/ISO/IEC-8652:1995,Ada 95

Reference Manual: The Language, The Standard Libraries, New York, NY,

January 1995.

[BLSM93] Standard Systems Center/XON,Base-Level System Modernization (BLSM):

A Strategy for the Future, Maxwell AFB, Gunter Annex, AL, November 1,

1993.

[BOO94] G. Booch,Object-Oriented Analysis and Design with Applications, Ben-

jamin/Cummings, Redwood City, CA, 1994.

[BROD93] M. L. Brodie and M. Stonebraker,Darwin: On the Incremental Migration of

Legacy Information Systems, Technical Report TR-0222-10-92-165, GTE

Laboratories, Inc., Waltham, MA, 1993.

[CDYD91] P. Coad and E. Yourdon, Object-Oriented Analysis, 2nd edition, Yourdon

Press, Englewood Cliffs, NJ, 1991.

[CHAS90] G. Chastek, M. H. Graham, and G. Zelesnik,The SQL Ada Model Description

Language—SAMeDL, Technical Report CMU/SEI-90-TR-26, Software

Engineering Institute, Pittsburgh, PA, 1990.

[CIM94] Center for Information Management,Center for Information Management

Software Systems Reengineering Process Model, Version 2.0, draft, Defense

Information Systems Agency, Joint Interoperability Engineering Organiza-

tion, Fairfax, VA, September 1994.

[DATE75] C. J. Date,An Introduction to Database Systems, 1st edition, Addison-Wes-

ley, Reading, MA, 1975.

[DIET89] W. C. Dietrick, Jr., L. R. Nackman, and F. Gracer. “Saving a Legacy with

Objects,”OOPSLA’89 Proceedings, 1989, pp. 77-83.

References - 2

[DOD92] Department of Defense, DoD 8020.1-M, Functional Management Process

for Implementing the Information Management Program of the Department

of Defense,draft, August 1992.

[DOD93] Department of Defense, DoD Directive 8120.1,Life-Cycle Management

(LCM) of Automated Information Systems (AISs), January 14, 1993.

[DOD94a] Department of Defense, MIL-STD-498 Software Development and Docu-

mentation, December 5, 1994.

[DOD94b] Department of Defense, Data Item Descriptions (DIDs) for MIL-STD-498.

[DON87] J. E. D. Donaho and G. K. Davis, “Ada Embedded SQL: The Options,”ACM

Ada Letters, Vol. VII, No. 3, May/June 1987.

[GRAH89] M. H. Graham,Guidelines for the Use of the SAME, Technical Report CMU/

SEI-89-TR-16, Ada 228027, Software Engineering Institute, Carnegie Mel-

lon University, PA, May 1989.

[HUTT94] A. T. F. Hutt, ed.,Object Analysis and Design: Description of Methods, John

Wiley & Sons, New York, NY, 1994.

[IDA95a] B. A. Haugh, M. C. Frame, and K. Jordan,An Object-Oriented Development

Process for Department of Defense Information Systems, IDA Paper P-3142,

Institute for Defense Analyses, Alexandria, VA, July 1995.

[IDA95b] D. Smith, B. Haugh, and K. Jordan,Object-Oriented Programming Strate-

gies for Ada, IDA Paper P-3143, Institute for Defense Analyses, Alexandria,

VA, July 1995.

[LOO94] C. Loosley, “A Three-Tier Solution: Achieving Data Integrity by Using

Objects and Relational DBMSs Together,”Database Programming and

Design, February 1994, pp. 23-25.

[MCC90] L. S. McCoy, “Bindings and Ada,”ACM Ada Letters, Vol. X, No. 8, Novem-

ber/December 1990.

[NACK86] L. R. Nackman et al., “AML/X: A Programming Language for Design and

Manufacturing,” Proceedings of the Fall Joint Computer Conference,

November 1986, pp. 145-159.

[NEL91] M. Nelson, “An Object-Oriented Tower of Babel,”ACM OOPS Messenger,

Vol. 2, No. 3, July 1991.

References - 3

[ORCL92] Oracle Corporation, “Pro Ada Precomplier,” Programmer’s Guide Version

1.4, 1992.

[RUMB91] J. Rumbaugh, M. Blaha, W. Premerlani, E. Frederick, and W. Lorensen,

Object-Oriented Modeling and Design, Prentice Hall, Englewood Cliffs, NJ,

1991.

[SEI91] Software Engineering Institute,Rationale for SQL Ada Module Description

Language SAMEDL, Software Engineering Institute, Carnegie Mellon Uni-

versity, Pittsburgh, PA, 1991.

[TAYL92] D. A. Taylor, Object-Oriented Information Systems: Planning and Imple-

mentation, John Wiley & Sons, New York, NY, 1992.

[WEG90] P. Wegner, “Concepts and Paradigms of Object-Oriented Programming,”

OOPS Messenger Vol. 1/No. 1, August 1990.

[WESL80] M. A. Wesley, T. Lozano-Perez, L. I. Lieberman, M. A. Lavin, and D. Gross-

man, “A Geometric Modeling System for Automated Mechanical Assem-

bly,” IBM Journal of Research and Development, Vol. 24, No. 1, January

1980, pp. 64-74.

[WIR90] R. Wirfs-Brock, B. Wilkerson, and L. Weiner,Designing Object-Oriented

Software, Prentice-Hall, Englewood Cliffs, NJ, 1990.

[WOLF87] R. Wolfe, M. Wesley, J. Kyle Jr., F. Gracer, and W. Fitzgerald, “Solid Mod-

eling for Production Design,”IBM Journal of Research and Development,

Vol. 31, No. 3, May 1987, pp. 277-295.

References - 4

Glossary-1

GLOSSARY

Words used in the definition of a glossary term and that are defined elsewhere are

in bold.

Abstraction Abstraction consists of focusing on the essential, inherent

aspects of an entity and ignoring its accidental properties

[RUMB91].

AIS Program A directed and funded AIS effort, to include allmigration sys-

tems, that is designed to provide a new or improved capability

in response to a validated need [DOD93].

Architecture The organizational structure of a system orCSCI, identifying

its components, their interfaces, and a concept of execution

among them [DOD94a].

Automated

Information System

(AIS)

A combination ofcomputer hardware and computersoftware,

data and/or telecommunications that performs functions such as

collecting, processing, transmitting, and displaying informa-

tion. Excluded are computer resources, both hardware and soft-

ware, that are physically part of, dedicated to, or essential in

real time to the mission performance ofweapon systems; used

for weapon system specialized training, simulation, diagnostic

test and maintenance, or calibration; or used for research and

development of weapon systems [DOD93]. However, as used

here, AISs include systems for C2I, C3I, and C4I, even though

they may be essential in real time to mission performance.

Class A class can be defined as a description of similarobjects, like a

template or cookie cutter [NEL91]. The class of an object is the

definition or description of those attributes and behaviors of

interest.

Glossary-2

CRC Cards Class-Responsibility-Collaborator Cards. CRC cards are

pieces of paper divided into three areas: theclass name and the

purpose of the class, the responsibilities of the class, and the

collaborators of the class. CRC cards are intended to be used to

iteratively simulate different scenarios of using the system to

get a better understanding of its nature [HUTT94, p. 192].

Collaboration A request from a client to a server in fulfillment of a client’s

responsibilities [HUTT94, p. 192].

Commercial-off-the-

Shelf (COTS)

Commercial items that require no unique government modifica-

tions or maintenance over the life cycle of the product to meet

the needs of the procuring agency [DOD93].

Computer Hardware Devices capable of accepting and storing computer data, exe-

cuting a systematic sequence ofoperations and computer data,

or producing control outputs. Such devices can perform sub-

stantial interpretation, computation, communication, control, or

other logical functions [DOD94a]

Computer Program A combination of computer instructions and data definitions

that enablecomputer hardware to perform computational or

control functions.

Computer Software

Configuration Item

(CSCI)

An aggregation ofsoftware that satisfies an end use function

and is designated for separate configuration management by the

acquirer. CSCIs are selected based on tradeoffs among software

function, size, host or target computers, developer, support con-

cept, plans for reuse, criticality, and interface considerations

need to be separately documented and controlled, and other fac-

tors.

Contract The list of requests that a clientclass can make of a server class.

Both must fulfill the contract: the client by making only those

requests the contract specifies, and the server by responding

appropriately to those requests [HUTT94, p. 192].

Database A collection of related data stored in one or more computerized

files in a manner that can be accessed by users orcomputer

programs via adatabase management system [DOD94a].

Glossary-3

Database

Management

System

An integrated set ofcomputer programs that provide the capa-

bilities needed to establish, modify, make available, and main-

tain the integrity of a database [DOD94b].

Encapsulation . . . (alsoinformation hiding) consists of separating the exter-

nal aspects of anobject, which are accessible to other objects,

from the internal implementation details of the object, which

are hidden from other objects [RUMB91]. The act of grouping

into a single object both data and theoperation that affects that

data [WIR90].

Framework Collection ofclass libraries, generics, design, scenario models,

documentation, etc., that serves as a platform to build applica-

tions.

Government-off-the-

Shelf (GOTS)

Products for which the Government owns the data rights, that

are authorized to be transferred to other DoD or Government

customers, and that require no unique modifications or mainte-

nance over the life cycle of the product [DOD93b].

Inheritance Inheritance is the sharing of attributes andoperations among

classes based on a hierarchical relationship [RUMB91]. Sub-

classes of a class inherit the operations of the parent class and

may add new operations and new instance variables. Inheritance

allows us to reuse the behavior of a class in the definition of

new classes [WEG90].

Information Hiding Making the internal data and methods inaccessible by separat-

ing the external aspects of anobject from the internal (hidden)

implementation details of the object.

Information System SeeAutomated Information System (AIS).

Legacy System Any currently operating automated system that incorporates

obsolete computer technology, such as proprietary hardware,

closed systems, “stovepipe” design, or obsolete programming

languages ordatabase systems.

Life-Cycle

Management (LCM)

A management process, applied throughout the life of anAIS,

that bases all programmatic decisions on the anticipated mis-

Glossary-4

sion-related and economic benefits derived over the life of the

AIS [DOD93].

Message Mechanism by whichobjects in an OO system requestservices

of each other. Sometimes this is used as a synonym foropera-

tion.

Migration The transition of support andoperations of software function-

ality from alegacy system to amigration system.

Migration System An existingAIS, or a planned and approved AIS, that has been

officially designated to support standard processes for a func-

tional activity applicable DoD-wide or DoD Component-wide

[DOD93]. Ordinarily, an AIS that has been designated to

assume the functionality of a legacy AIS.

Monomorphism A concept in type theory, according to which a name (such as a

variable declaration) may only denoteobjects of the same

class.

Object A combination of state and a set of methods that explicitly

embodies anabstraction characterized by the behavior of rele-

vant requests. Anobject is an instance of an implementation

and an interface. An object models a real-world entity (such as a

person, place, thing, or concept), and it is implemented as a

computational entity that encapsulates state andoperations

(internally implemented as data and methods) and responds to

requestorservices.

Object-Oriented

Analysis

A method of analysis in which requirements are examined from

the perspective of theclasses andobjects found in the vocabu-

lary of the problem domain [BOO94].

Object-Oriented

Decomposition

The process of breaking a system into parts, each of which rep-

resents someclass or object from the problem domain

[BOO94].

Object-Oriented

Design

A method of design encompassing the process of OO decompo-

sition and a notation for depicting both logical and physical as

well as static and dynamic models of the system under design

Glossary-5

[BOO94].

Object-Oriented

Programming

A method of implementation in which programs are organized

as cooperative collections of objects, each of which represents

an instance of someclass, and whose classes are members of a

hierarchy of classes united viainheritance relationships. In

such programs, classes are generally viewed as static, whereas

objects typically have a much more dynamic nature, which is

encouraged by the existence of dynamic binding andpolymor-

phism [BOO94].

Object-Oriented

Technology (OOT)

OOT consists of a set of methodologies and tools for develop-

ing and maintainingsoftware systems using softwareobjects

composed of encapsulated data andoperations as the central

paradigm.

Object Request

Broker (ORB)

Program that provides a location and implementation

independent mechanism for passing amessage from one object

to another.

Operation A specific behavior that anobject exhibits, implemented as a

procedure contained within the object.

Polymorphism The sameoperation may behave differently on differentclasses

[RUMB91].

Reengineering The process of examining and altering an existing system to

reconstitute it in a new form. May include reverse engineering

(analyzing a system and producing a representation at a higher

level of abstraction, such as design from code), restructuring

(transforming a system from one representation to another at

the same level of abstraction), redocumentation (analyzing a

system and producing user or support documentation), forward

engineering (usingsoftware products derived from an existing

system, together with newrequirements, to produce a new sys-

tem), retargeting (transforming a system to install it on a differ-

ent target system), and translation (transforming source code

from one language to another or from one version of a language

to another) [DOD94a].

Glossary-6

Requirement (1) characteristic that a system orCSCI must possess in order

to be acceptable to the acquirer. (2) A mandatory statement in

this standard or another portion of thecontract [DOD94a].

Responsibility A contract that aclass must support, intended to convey a

sense of the purpose of the class and its place in the system

[HUTT94, p. 192].

Service A service is a specific behavior that anobject is responsible for

exhibiting [CDYD91].

Software Computer programs and computer databases. Note:

Although some definitions of software includes documentation,

MIL-STD-498 limits the scope of this term to computer pro-

grams and computer databases in accordance with Defense Fed-

eral Acquisition Regulation Supplement 227.401 [DOD94a].

Software

Development

A set of activities that results insoftware products. Software

development may include new development, modification,

reuse,reengineering, or any other activities that result in soft-

ware products [DOD94a].

Software

Engineering

In general usage, a synonym forsoftware development. As

used in this standard [MIL-STD-498], a subset of software

development consisting of all activities except qualification test-

ing. The standard makes this distinction for the sole purpose of

giving separate names to thesoftware engineering and soft-

ware test environments [DOD94a].

Software

Engineering

Environment

The facilities, hardware,software, firmware, procedures, and

documentation needed to performsoftware engineering. Ele-

ments may include but are not limited to computer-assisted soft-

ware engineering (CASE) tools, compilers, assemblers, linkers,

loaders, operating systems, debuggers, simulators, emulators,

documentation tools, anddatabase management systems.

Software System A system consisting solely ofsoftware and possibly the com-

puter equipment on which the software operates [DOD94a].

Weapon System Items that can be used directly by the Armed Forces to carry out

Glossary-7

combat missions and that cost more than 100,000 dollars or for

which the eventual total procurement cost is more than 10 mil-

lion dollars. That term does not include commercial items sold

in substantial quantities to the general public (Section 2403 of

10 U.S.C., reference (bb)) [DOD93].

Glossary-8

Acronyms - 1

LIST OF ACRONYMS

ADAR Ada Decimal Arithmetic and Representatives

AIS Automated Information Systems

AP Application Program

API Application Programming Interface

CICS Customer Information Control System

CORBA Common Object Request Broker Architecture

DBMS Database Management Systems

DBS Database Server

DEC Digital Equipment Corporation

DISA Defense Information Systems Agency

DoD Department of Defense

GDP Geometric Design Processor

GUI Graphical User Interface

I/O Input/Output

IDA Institute for Defense Analyses

OO Object-Oriented

OOT Object-Oriented Technology

SAMeDL SQL Ada Module Description Language

TGMS Tiered Geometric Modeling System\s

Acronyms - 2

